Acta mathematica scientia,Series A ›› 2003, Vol. 23 ›› Issue (5): 545-553.
• Articles • Previous Articles Next Articles
YANG Xin-Jian
Online:
Published:
Supported by:
国家自然科学基金(10071019)和湖南省自然科学基金(00JJY2003)资助课题
Abstract:
Let X(t)=X(0)+∫^t_0α(X(s))dB(s)+∫^t_0β( X(s))ds be a d dimensional nondegenerate diffusion process, whereB(t) is a Brownian motion. If α(x) and β(x) are bounded continuous on R^d and satisfying Lipschitz condition, and a(x)=α(x)α(x)^* is uniformly positive definite, that is for some positive constant C_0, a(x)≥C_0{d×d}, for all x∈R^d, then we prove that, when d≥3:P(ω: dimX(E,ω)=dimGRX(E,ω)=2dimE, for all E∈B([0,∞)))=1,where dimF denotes the Hausdorff dimension of F for F R^l(l≥1), and X(E,ω)={X(t,ω): t∈E},GRX(E,ω)={(t, X(t,ω)): t∈E}, ω∈Ω.
Key words: Diffusion process; , Brownian motion; , Hausdorff , dimension; , Image set, Graph set
CLC Number:
YANG Xin-Jian. The Uniform Hausdorff Dimensions for the Image Sets and Graph Sets of the Nondegenerate Multidimensional Diffusion Processes[J].Acta mathematica scientia,Series A, 2003, 23(5): 545-553.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
http://121.43.60.238/sxwlxbA/EN/Y2003/V23/I5/545
[1]Ikeda N, Watanabe S.Stochastic Differential Equations and Diffusion Processes. New York: NorthHolland Publishing Company, 1981 [2]Shen S J.Some estimates of the transition density of a nondegenerate diffusion Makov process. Ann Probab, 1991, 19(2): 538-561 [3]Stroock D W.An Introduction to the Theory of Large Deviation. New York: SpringerVerlag, 1984. 81-82 [4]杨新建.扩散过程样本的Holder连续性及其应用. 湖南师范大学学报, 1995,18(2):13-18 [5]胡迪鹤等. 随机分形引论. 武汉: 武汉大学出版社, 1995.89-92
Cited