[1]Van Dulst D. Equivalent norms and the fixed point property for nonexpansi
ve mappings. JLondon Math Soc, 1982,25:139-144
[2] Bruck R E. A simple proof of the mean ergodic theorem for nonlinear contr
actions in Banachspaces. Isreal J Math, 1979, 32:107-116
[3] Takahashi W, Kim G E. Approximating fixed points of nonexpansive mappings
in Banach spaces. Math Japonica, 1998, 48:1-9
[4] Bose S C. Weak convergence to the fixed point of an asymptotically nonexp
ansive mapping. Proc Amer Math Soc, 1978, 68:305-308
[5] Ishikawa S. Fixed points by a new iteration method. Proc Amer Math Soc, 1974, 44:147-150
[6]Goebel K, Kirk W A. A fixed point theorem for asymptotically nonexpansive
mappings. Pro Amer Math Soc, 1972, 35:171-174
[7] Opial Z. Weak convergence of the sequence of successive approximations for nonexpansive
mappings. Bull Amer Math Soc, 1967,73:595-597
[8]Passty G B. Construction of fixed points for asymptotically nonexpansive
mappings. Proc Amer Math Soc, 1982, 84:212-216
[9] Schu J. Weak and strong convergence to fixed points of asymptotically non
expansive mappings. Bull Austral Math Soc, 1991, 43:153-159
[10]Schu J. Iterative construction of fixed points of asymptotically n
onexpansive mappings. J Math Anal Appl, 1991, 158:407-413
[11]Tan K K, Xu H K. The nonlinear ergodic theorem for asymptotically nonexp
ansive mappings in Banach spaces. Proc Amer Math Soc, 1992, 114:399-404
[12]Xu H K.Existence and convergence for fixed points of mappings of asympto
tically nonexpansive type. Nonlinear Anal, 1991, 16:1139-1146
[13] Zheng X Y. The normalized duality mappings of Banach spaces. Nonlinear A
nal, 1995, 24: 989-995 |