Acta mathematica scientia,Series A ›› 2003, Vol. 23 ›› Issue (1): 31-37.

• Articles • Previous Articles     Next Articles

Approximating Fixed Points of Asymptotically Nonexpansive Mappings in Banach Spaces

 CENG Liu-Chuan   

  • Online:2003-02-25 Published:2003-02-25
  • Supported by:

    国家自然科学基金资助项目(19801023); 高等学校优秀青年教师教学和科研奖励基金资助项目

Abstract:

Let E be a uniformly convex Banach space,  \$C\$ be a nonempty closed convexsubset of \$E\$, and \$T:C→C\$  be an asymptotically nonexpansive mapping with fixed points. It is shown that under some suitable conditions, the sequence \${x\-n}\$ defined by the modified Ishikawa iteration process: \$\$x\-\{n+1\}=t\-nT\+n(s\-nT\+nx\-n+(1-s\-n)x\-n)+(1-t\-n)x\-n,\$\$converges weakly to a fixed point of \$T\$, where \${t\-n}\$ and \${s\-n}\$ aresequences in  \[0,1\] with some restrictions.

Key words: Fixed point, Asymptotically nonexpansive mapping, Modified Ishikawa iteration process, Uniformly convex Banach space

CLC Number: 

  • 47H09
Trendmd