Acta mathematica scientia,Series A ›› 2004, Vol. 24 ›› Issue (4): 496-500.

• Articles • Previous Articles     Next Articles

Spanning Trees, Basic Cycles and Betti Deficiency of a Graph

 HUANG Yuan-Qiu, LIU Pan-Pei   

  • Online:2004-08-25 Published:2004-08-25
  • Supported by:

    国家自然科学基金(10271045)、 国家自然科学数学天元青年基金(10226016)以及湖南省教育厅青年基

Abstract:

Let \$G\$ be a graph and \$T\$ be  a spanning tree of it. The sign \$ξ(G, T)\$ denotes thenumber of components of \$G\E(T)\$ with  odd number of edges, and it is knownthat  the value \$ξ(G)=min[DD(X]T[DD)]ξ(G, T)\$ is defined as Betti deficiency of \$G\$, where min is taken over all spanning trees of \$G\$. In this paper the authors  study the characteristic structure of a graph  conne ting to  its Betti deficiency, and obtain some
new results on the maximum genus of a graph.

Key words: Spanning tree, Betti Deficiency, Upper Embeddability, Maximum Genus

CLC Number: 

  • 05C
Trendmd