波谱学杂志, 2023, 40(2): 169-178 doi: 10.11938/cjmr20222993

研究论文

溶液中ATAD2溴结构域聚集行为的研究

王远方1,2, 王小花1,2, 舒畅1,2, 张许1,2,3,4, 刘买利1,2,3,4, 曾丹云,1,2,*

1.波谱与原子分子物理国家重点实验室,武汉磁共振中心,中国科学院精密测量科学与技术创新研究院,湖北 武汉 430071

2.中国科学院大学,北京 100049

3.华中科技大学武汉光电国家研究中心,湖北 武汉 430074

4.湖北光谷实验室,湖北 武汉 430074

The Aggregation of ATAD2 Bromodomain in Solution

WANG Yuanfang1,2, WANG Xiaohua1,2, SHU Chang1,2, ZHANG Xu1,2,3,4, LIU Maili1,2,3,4, ZENG Danyun,1,2,*

1. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Wuhan National Research Center for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

4. Optics Valley Laboratory, Wuhan 430074, China

通讯作者: *Tel: 19947650913, E-mail:zengdanyun@apm.ac.cn.

收稿日期: 2022-04-6   网络出版日期: 2022-05-06

基金资助: 国家重点基础研究发展计划(“973”计划)资助项目(2017YFA0505400); 国家重点基础研究发展计划(“973”计划)资助项目(2018YFE0202300); 国家重点基础研究发展计划(“973”计划)资助项目(2018YFA0704002)

Corresponding authors: *Tel: 19947650913, E-mail:zengdanyun@apm.ac.cn.

Received: 2022-04-6   Online: 2022-05-06

摘要

三磷酸腺苷酶家族蛋白2(ATAD2)是一种染色质调节因子. 它的异常表达与多种恶性肿瘤的发生和发展密切相关,因此还被称为致癌转录辅助因子. ATAD2由ATP酶结构域和溴结构域组成. 其中,溴结构域可以特异性识别并结合组蛋白末端的乙酰化赖氨酸位点,调控染色体重构和转录,但其功能相关的很多结构特征并未可知. 我们首先发现ATAD2溴结构域在溶液中易发生聚集. 然后以核磁共振(NMR)和圆二色谱(CD)为主要研究手段,从环境因素和结构因素两方面对ATAD2溴结构域的聚集机理进行了初步探讨,发现该聚集行为伴有结构变化,并可能与功能相关. 本研究可能为ATAD2溴结构域抑制剂的研发提供新的思路.

关键词: 核磁共振(NMR); ATAD2; 溴结构域; 聚集

Abstract

ATPase family AAA domain-containing protein 2 (ATAD2) is a chromatin regulator, also known as an oncogenic transcription cofactor. Its abnormal expression is closely related to the occurrence and development of various malignant tumors. ATAD2 consists of two domains: the ATPase domain and the bromodomain. The bromodomain can specifically recognize and interact with the acetylated lysines in proteins, which regulates the refactoring and transcription of chromosomes. In this work, we found that ATAD2 bromodomains are aggregated under normal solution conditions. Considering the possible impact of aggregation on the interaction between ATAD2 bromodomain and acetylated histone tail, we preliminarily investigated the aggregation of ATAD2 bromodomains mainly by nuclear magnetic resonance (NMR) and circular dichroism (CD) spectra. The results suggested that the aggregation is accompanied with structure alteration and possibly related to the physiological functions of cells. This study may provide new clues for the development of ATAD2 bromodomain inhibitors.

Keywords: nuclear magnetic resonance (NMR); ATAD2; bromodomain; aggregation

PDF (921KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王远方, 王小花, 舒畅, 张许, 刘买利, 曾丹云. 溶液中ATAD2溴结构域聚集行为的研究[J]. 波谱学杂志, 2023, 40(2): 169-178 doi:10.11938/cjmr20222993

WANG Yuanfang. The Aggregation of ATAD2 Bromodomain in Solution[J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 169-178 doi:10.11938/cjmr20222993

引言

三磷酸腺苷酶家族蛋白2(ATPase family AAA domain-containing protein 2,ATAD2)是一种表观遗传调控因子,也被称为致癌转录因子[1,2]. 有研究表明,ATAD2在人类恶性肿瘤细胞中与多种关键性调控机制相关. 例如,ATAD2作为E2F转录因子、雌激素和雄激素受体的共同激活因子,可以促进细胞增殖和下游基因的表达,形成扩增环,导致细胞增殖、侵袭和迁移[3-5]. ATAD2的过表达与肝癌、肺癌、胃癌、前列腺癌、子宫内膜癌、三阴性乳腺癌等多种癌症相关[3,6-11]. 同时,ATAD2上调还与患者的不良预后有关,常被作为预后标志[12],这使得ATAD2成为癌症治疗的潜在用药靶点.

ATAD2主要由两个结构域组成:ATP酶结构域和溴结构域. ATP酶结构域负责ATP的结合和水解,参与大分子复合体分解、信号转导、细胞周期调节等功能[13,14];溴结构域由130个高度保守的氨基酸组成,可以特异性识别组蛋白末端的乙酰化赖氨酸位点,从而进行染色质共价修饰、调节染色体重构和调控转录[15]. 如图1所示,ATAD2溴结构域结构保守,通常由四个α-螺旋(αZ、αA、αB、αC)和三段loop区域(ZA-loop、BC-loop、AB-loop)组成.ZA-loop、BC-loop及部分α-螺旋形成一个疏水空腔,用于结合乙酰化组蛋白的N尾端. 疏水空腔中的一个保守的天冬酰胺残基(N1064)是特异性识别组蛋白尾部乙酰化赖氨酸的重要位点[16,17].

图1

图1   ATAD2溴结构域的晶体结构(PDB:6CPS)

Fig. 1   The crystal structure of ATAD2 bromodomain (PDB: 6CPS)


ATAD2溴结构域属于溴结构域八大家族中的第五家族.作为乙酰化染色质的“阅读器”,发挥其功能活性的ATAD2溴结构域通常以单体形式分别识别组蛋白H4 N端第5位和第12位乙酰化赖氨酸(H4K5ac,H4K12ac),或组蛋白H3 N端第14位赖氨酸(H3K14ac)[17,18]. 然而在溴结构域八大家族中,目前已知溴结构域还可以以单体或二聚体形态同时识别含有两个乙酰化位点的氨基酸片段. 如第二家族的BRD4以单体形式结合H4K5acK8ac、H4K12acK16ac和H4K16acK20ac,却以二聚体形式结合H4K8acK12ac[19],溴结构域抑制剂BAY-850通过特异性结合ATAD2溴结构域二聚体,从而对其进行选择性抑制[2]. 最近有文献[20]报道含溴结构域的蛋白CBP/P300可以与异常乙酰化组蛋白发生淀粉样聚集,溴结构域抑制剂的加入可以减少亨廷顿蛋白淀粉样聚集,说明溴结构域与其淀粉样聚集的形成有关. 溴结构域的聚集状态与功能密切相关,然而其聚集状态与功能的关系却仍未可知. 因此了解溴结构域的聚集对阐明其识别和调控乙酰化蛋白的机制以及抑制剂的开发都有重要意义.

在本文中,我们对ATAD2溴结构域在溶液中的结构特征进行了研究,结果发现,ATAD2溴结构域在溶液环境中易发生多聚,这可能影响其与组蛋白的相互作用形态. 为了探索其聚集机制,我们进一步利用圆二色谱(circular dichroism,CD)和核磁共振(nuclear magnetic resonance,NMR)技术,对ATAD2溴结构域的聚集过程进行了检测,分析了可能引发多聚的多个因素. 结果发现温度、pH、离子强度以及半胱氨酸突变均无法阻止该蛋白的聚集,但二硫键对蛋白结构和聚集速率有很大影响. 推测该结构域的聚集是蛋白结构的特性所致,可能与其在细胞中的分子功能有关. 这一发现可能为ATAD2溴结构域抑制剂的研发提供帮助.

1 实验部分

1.1 实验材料

羟乙基哌嗪乙硫磺酸(HEPES)、咪唑(C3H4N2,Imidazole)、甘油(C3H8O3,Glycerol)、葡萄糖(Glucose)均购于国药集团化学试剂有限公司,重水(D2O)、15N标记氯化铵(15NH4Cl)购于Sigma-Aldrich公司,异丙基硫代半乳糖苷(IPTG)、TEV蛋白酶购于北京索莱宝科技有限公司,卡那霉素购于武汉百腾瑞达生物科技有限公司,二硫苏糖醇(C4H10O2S2,DTT)购于北京博奥拓达科技有限公司,用于非变性凝胶电泳实验的BeyoGelTM Plus PAGE预制胶、电泳液、非变性凝胶电泳蛋白上样缓冲液均购于碧云天生物科技有限公司.

1.2 蛋白样品的表达与纯化

1.2.1 天然丰度的ATAD2溴结构域的表达与纯化

天然丰度的ATAD2溴结构域表达与纯化操作流程如下[21]:将重组质粒PET21a(+)-ATAD2转化到R(s)感受态细胞中,加入无抗LB培养基,37 ℃、220 rpm培养30 min后离心重悬,涂菌液于带有卡那霉素抗性的琼脂平板上. 将平板置于37 ℃培养箱过夜培养. 挑单斑接种到1 000 mL卡那霉素抗性的LB中,37 ℃、220 rpm培养约2 h至OD600在0.8~1.0之间,加入1.0 mmol/L IPTG,220 rpm、17 ℃诱导过夜后收菌.

菌体沉淀重悬于50 mL缓冲液(500 mmol/L NaCl、50 mmol/L HEPES、3 mmol/L咪唑、5%甘油, pH 7.5)中,1 000 bar高压裂菌后,20 000 rpm、40 min离心取上清液,用0.22 μm的微孔滤膜过滤,上样至Ni柱,用缓冲液A(500 mmol/L NaCl、50 mmol/L HEPES、5 mmol/L咪唑、5%甘油,pH 9.0)冲洗平衡,用缓冲液B(500 mmol/L NaCl、50 mmol/L HEPES、300 mmol/L咪唑、5%甘油,pH 9.0)线性梯度10%~70%洗脱,收集目的蛋白;将样品浓缩至1~2 mg/mL,加入TEV蛋白酶,在缓冲液A中透析酶切过夜,酶切后的样品再次上样至缓冲液A平衡过的Ni柱,收集酶切后的蛋白;超滤浓缩脱盐至5 mg/mL,冷冻保存在-20 ℃冰箱中.

1.2.2 15N标记的ATAD2溴结构域及其突变体的表达与纯化

15N标记ATAD2溴结构域野生型、C1101A突变体及C1057A/C1079A/C1101A突变体的表达与纯化步骤如下:将重组质粒PET21a(+)-ATAD2转化到R(s)感受态细胞中,加入无抗LB培养基,37 ℃,220 rpm培养30 min后离心重悬,将菌液涂于带有卡那霉素抗性的琼脂平板上. 将平板置于37 ℃培养箱,过夜生长,挑单斑接种至5 mL卡那霉素抗性的LB培养基中,37 ℃、220 rpm培养约8 h;6000 rpm、10 min离心收集沉淀后,菌体用卡那霉素抗性的M9培养基(含15NH4Cl)重悬,转入50 mL卡那霉素抗性的M9培养基中,37 ℃、220 rpm条件下培养8 h;再转入1 L卡那霉素抗性的M9培养基中培养至OD600在0.8~1.0之间,17 ℃、220 rpm条件下培养12 h收菌;后续纯化过程与天然丰度的ATAD2溴结构域纯化过程相同,最终获得的纯蛋白样品冻存于-20 ℃冰箱中.

1.3 非变性PAGE实验

取出BeyoGelTM Plus PAGE预制胶,并固定在电泳槽内,内槽倒满电泳缓冲液,外槽加电泳缓冲液至没过底部阳极,缓慢拔出梳子,准备上样. 将天然丰度的蛋白样品浓缩或稀释配制成不同浓度样品,取10 μL不同浓度蛋白样品和10 μL非变性凝胶电泳蛋白上样缓冲液混合均匀,在上样孔内依次加入5 μL蛋白Marker及10 μL不同浓度的混合蛋白溶液,设置电泳条件为电压150 V、40 min. 室温染色30 min,清水冲洗,照胶仪上观察跑胶结果.

1.4 CD实验

将天然丰度的蛋白样品更换缓冲液于50 mmol/L磷酸盐中,制备不同浓度、不同pH值或不同盐离子浓度的溶液,取2 mL注入干净的1 cm石英比色皿,置于预热好的CD谱仪(Applied Photophysics Chirascan)中. 设置测试波长宽度为0.3 nm,光谱扫描范围为180~260 nm,步进0.5 nm,每波长点采样时间为0.5 s.所有CD谱图均在25 ℃采集,每个蛋白样品重复采集三次以上. 数据处理在仪器自带软件中进行,CD强度取多次采集的平均值并扣除背景. 最后将数据进行平滑处理.

1.5 NMR实验

15N标记的蛋白样品更换缓冲液于NMR缓冲液(25 mmol/L HEPES、150 mmol/L NaCl、2 mmol/L DTT,pH 7.5)中,浓缩蛋白浓度为0.2 mmol/L,加重水至浓度为10%,在不同温度下孵育不同时间后,在Bruker Avance 700 MHz谱仪进行NMR实验,实验温度为288~298 K.1H-15N HSQC实验直接维(1H)谱宽为7 002 Hz,间接维(15N)谱宽为2 270 Hz,两维的谱中心分别位于δH 4.69和δN 118.0,1H维和15N维采样点数分别为2 048和256,累加次数为16.一维1H NMR实验谱宽为7 002 Hz,谱中心位于δH 4.69,采样点数为65 536,累加次数为512.

2 结果与讨论

2.1 ATAD2溴结构域在溶液中的聚集行为

我们在准备ATAD2溴结构域溶液样品时发现,随着时间的推移,室温下溴结构域逐渐浑浊,表明该蛋白可能发生自聚集[图2(a)]. 为了明确这一现象,我们利用非变性PAGE测定了不同浓度ATAD2溴结构域的分子量.结果如图2(b)所示,在0.025~0.5 mmol/L浓度范围,所有样品中都可以看到二聚体条带的存在,而在高浓度样品中还可以清晰看到四聚体条带.该结果证实,ATAD2溴结构域在溶液中可以形成不同形态的寡聚体.

图2

图2   (a) ATAD2溴结构域形成沉淀,左管为ATAD2溴结构域溶液,右管为缓冲液对照;(b)非变性PAGE检测ATAD2溴结构域聚集情况;图中Marker为蛋白Marker,1~5泳道分别是浓度为0.025 mmol/L、0.05 mmol/L、0.1 mmol/L、0.25 mmol/L、0.5 mmol/L的ATAD2溴结构域

Fig. 2   (a) The ATAD2 bromodomain formed gelatinous precipitates. The left tube contains ATAD2 bromodomain solution; the right tube contains buffer solution as a control. (b) The aggregation of ATAD2 bromodomain detected by native-PAGE: Swimlanes 1~5 correspond to 0.025 mmol/L, 0.05 mmol/L, 0.1 mmol/L, 0.25 mmol/L and 0.5 mmol/L of ATAD2 bromodomain in the loading samples, respectively


为了进一步确定ATAD2溴结构域在溶液中随时间的聚集情况,我们用测定了0.2 mmol/L的ATAD2溴结构域的1H- 15N HSQC谱(图3).结果显示,随时间的推移,ATAD2溴结构域的NMR谱峰化学位移没有明显变化,但谱峰强度整体明显减弱. 我们分别随机选取了信号分散度高、谱峰清晰的区域的NMR相关信号(1、2、3)进行了实时分析,这些信号强度随时间的变化如图3(c)所示. 结果显示NMR信号强度整体随时间推移而减弱,说明ATAD2溴结构域单体在溶液中不能稳定存在,单体发生了聚集导致了NMR谱线展宽、信号衰减甚至消失.

图3

图3   (a) ATAD2溴结构域的1H- 15N HSQC谱图: ATAD2溴结构域初始状态NMR谱(蓝色),25 ℃孵育8 h后的ATAD2溴结构域NMR谱(红色);(b) ATAD2溴结构域部分NMR信号随时间的变化;(c) ATAD2溴结构域中代表谱峰强度随时间的变化

Fig. 3   (a) 1H- 15N HSQC spectra of ATAD2 bromodomain: The NMR spectrum of the initial ATAD2 bromodomain sample (blue), the NMR spectrum of the sample incubated at 25 ℃ for 8 h (red); (b) The representative NMR signals of ATAD2 bromodomain over time; (c) The intensities of representative NMR signals of ATAD2 bromodomain over time


上述结果确证了ATAD2溴结构域在室温溶液中的聚集行为. 由于多聚可能引发结构变化,对此,我们进一步采用CD实验检测了ATAD2溴结构域在不同浓度下的二级结构. 结果如图4(a)所示. 当蛋白浓度由0.05 mmol/L升高至0.1 mmol/L时,α-螺旋在190 nm处的特征峰消失;而当蛋白浓度进一步升高至0.5 mmol/L时,α-螺旋在208 nm和222 nm处的特征峰也消失,而在230 nm处出现了一个强负峰,推测是因为蛋白结构中α-螺旋减少而β-结构大幅度增加.β-折叠的CD吸收峰位置出现了偏移,这可能是由于ATAD2聚集导致溶液不均一造成的. 由Chirascan软件对CD谱线的拟合结果[图4(b)]显示,随着浓度的增加,该蛋白结构中的α-螺旋(Helix)相对含量从原来的34.6%降低至13.4%,而反β-折叠(Antiparallel)从8.4%提高至24.4%.这说明蛋白在聚集过程中发生了构象转变.

图4

图4   (a) ATAD2溴结构域(BRD)在不同浓度下的CD谱图;(b)根据CD谱图得到的不同浓度下ATAD2溴结构域中各种二级结构的含量

Fig. 4   (a) CD spectra of ATAD2 bromodomain (BRD) at different concentrations; (b) The percentages of various secondary structures of ATAD2 bromodomain at different concentrations gained from the CD spectra


ATAD2溴结构域识别组蛋白乙酰化赖氨酸的活性位点位于ZA-loop、BC-loop和部分α-螺旋形成的疏水空腔中. 而ATAD2溴结构域的多聚,很有可能遮蔽其活性位点,影响其功能的发挥. 因此,有必要对ATAD2溴结构域的聚集机理进行研究.

2.2 溶液环境对ATAD2溴结构域聚集行为的影响

影响蛋白质聚集的环境因素有很多,比如浓度、温度、pH值、盐浓度等. 为了研究影响ATAD2溴结构域聚集的因素,我们通过一维1H NMR结合CD技术对ATAD2溴结构域在不同溶液环境中的聚集行为进行了观测.

2.2.1 温度对ATAD2溴结构域聚集行为的影响

图5(a)显示了不同温度下,ATAD2溴结构域的聚集情况. 随着时间的推移,该蛋白的NMR谱峰强度衰减. 这说明各温度条件下,8 h后溶液中均有一部分单体形成了大分子量的多聚体而无法被NMR检测到,导致了单体信号的减弱,可见降低温度并不能阻止聚集的发生. 然而,总体来看,288 K孵育8 h后的一维1H NMR谱的谱峰衰减程度小于298 K时的谱峰衰减程度,表明降低温度可以在一定程度上减缓蛋白聚集的速率. 此外,288 K时的一维1H NMR谱较之于298 K时发生了明显的变化,这可能是由于1H化学位移随温度变化或ATAD2溴结构域结构随温度变化引起的. 但具体原因仍需进一步研究. 而该NMR变温实验再一次验证了ATAD2溴结构域在溶液中的自聚集,并表明这种自聚集在一段较宽的常规实验温度范围内均存在.

图5

图5   (a) ATAD2溴结构域的不同温度孵育8 h前后1H NMR谱图,初始状态(蓝色),孵育8 h状态(红色);(b) ATAD2溴结构域不同pH下的CD谱图;(c) ATAD2溴结构域在不同离子强度溶液的CD谱图

Fig. 5   (a) 1H NMR spectra of ATAD2 bromodomain incubated at different temperatures. Initial state (blue), incubation state for 8 h (red); (b) The CD spectra of ATAD2 bromodomain at different pH; (c) The CD spectra of ATAD2 bromodomain at different salt concentrations


2.2.2 pH对ATAD2溴结构域聚集行为的影响

图5(b)显示了在25 ℃下,不同pH值时,0 mmol/L盐浓度环境下0.05 mmol/L ATAD2溴结构域孵育8 h的CD谱图. 可以看到,在酸性和中性环境下,谱图显示明确的α-螺旋特征峰,说明蛋白结构中以α-螺旋为主. 当溶液环境为pH 11时,谱图222 nm处的特征峰减弱,说明α-螺旋减少,而β-结构含量增加,结构组成有所改变. 改变pH值,样品依旧变浑浊,但pH对ATAD2单体的稳定性有影响,酸性到中性环境更利于α-螺旋的稳定,而碱性环境下更容易发生聚集.

2.2.3 离子强度对ATAD2溴结构域聚集行为的影响

图5(c)显示了在25 ℃、pH 7.0时,不同离子强度下的0.05 mmol/L的ATAD2溴结构域孵育8 h的CD谱图. 实验结果显示,当缓冲液盐浓度由0 mmol/L提高至500 mmol/L时,CD谱图的特征峰无位移,均呈现α-螺旋的特征峰为主的谱线. 随盐浓度的升高,特征峰强度略有增加,但变化幅度很小.改变离子强度,样品依旧浑浊,聚集发生,但ATAD2溴结构域的结构对离子强度不敏感.

2.3 二硫键对ATAD2溴结构域聚集行为的影响

ATAD2溴结构域有三个半胱氨酸,其中C1057和C1079在ZA、BC loop区域形成的疏水空腔底部形成一个二硫键,而另一个游离的半胱氨酸C1101存在于ATAD2溴结构域C末端附近[22]图1).由于游离的半胱氨酸有较强的还原性,易形成分子间二硫键而引起蛋白二聚,我们猜测分子间二硫键的形成可能是ATAD2溴结构域聚集的原因. 为了验证这一猜想,我们构建并表达了两种突变体:ATAD2 C1101A单突变体及ATAD2 C1057A/C1079A/C1101A多位点突变体,并通过质谱检测其分子量(图S1和S2),保证突变体的正确性.

图6(a)6(b)可以看到,25 ℃孵育8 h后,两种突变体的谱峰强度整体减弱,说明突变体依然形成了多聚,阻止二硫键的形成并不能免除聚集行为的发生. 为进一步观测半胱氨酸突变对聚集行为是否有影响,我们采集了各蛋白样品在0、2、4、6、8 h的1H-15N HSQC谱,并从中选取分散均匀的30个NMR信号,分析信号强度随时间的变化[图6(c)].8 h后,野生型ATAD2溴结构域的30个信号平均强度减弱至约52%,而ATAD2 C1101A突变体信号平均强度减弱至约51%. 结合信号强度衰减曲线的斜率,可以看出ATAD2 C1101A突变体与野生型蛋白的聚集速率很接近. 而ATAD2 C1057A/C1079A/C1101A突变体的信号平均强度衰减曲线斜率明显变小,8 h后,平均强度减弱至约85%. 由此可见,虽然半胱氨酸位点的突变均不能完全阻止ATAD2溴结构域的聚集,但分子内二硫键的断裂可以很大程度上减缓聚集的速率,而分子间是否形成二硫键对聚集并无影响.

图6

图6   (a) C1101A突变体的1H- 15N HSQC谱图:样品初始状态(蓝色),25 ℃孵育8 h后的样品(红色);(b) ATAD2 C1057A/C1079A/C1101A突变体蛋白的1H- 15N HSQC谱图:蛋白初始状态(蓝色),25 ℃孵育8 h后的蛋白(红色);(c) ATAD2溴结构域野生型、ATAD2 C1101A突变体和ATAD2 C1057A/C1079A/C1101A突变体的30个NMR信号平均谱峰强度随时间的变化;(d) ATAD2溴结构域野生型(红色)与ATAD2 C1057A/C1079A/C1101A突变体(蓝色)的初始1H- 15N HSQC谱图叠加

Fig. 6   (a) 1H- 15N HSQC spectra of C1101A mutant: The initial sample state (blue), the sample incubated at 25 ℃ for 8 h (red); (b) 1H- 15N HSQC spectra of C1057A/C1079A/C1101A mutant: The initial protein sample (blue), the sample incubated at 25 ℃ for 8 h (red); (c) The average signal intensities of 30 NMR resonances of wild-type ATAD2 bromodomain, C1101A mutant and C1057A/C1079A/C1101A mutant over time; (d) The superposition of the initial 1H-15N HSQC spectra of ATAD2 bromodomain wild-type (red) and C1057A/C1079A/C1101A mutant (blue)


为探讨ATAD2 C1057A/C1079A/C1101A突变体减缓聚集行为的原因,我们将ATAD2 C1057A/C1079A/C1101A突变体与野生型ATAD2溴结构域的初始1H-15N HSQC谱进行了比较,发现约55% NMR谱峰发生了不同程度的化学位移变化[图6(d)]. 这说明半胱氨酸的突变引起了ATAD2溴结构域整体结构的改变,半胱氨酸位点对结构的稳定起到了至关重要的作用. 然而结构的转变却延缓了聚集行为的发生,暗示了野生型结构以及二硫键的稳固作用是趋利于蛋白聚集的. 文献报道CBP/P300蛋白调控异常乙酰化组蛋白的淀粉样聚集[20],推测ATAD2溴结构域的聚集也可能是其在细胞中行驶功能所需的特性. 关于二硫键如何改变ATAD2溴结构域的结构以及如何影响聚集的过程等问题,正在进一步分析研究中.

3 结论

ATAD2作为一种染色质调节因子,与恶性肿瘤发生发展密切相关.ATAD2溴结构域可以特异性识别并结合组蛋白末端的乙酰化赖氨酸位点,调节染色体的重构和转录. 但对其生物功能相关的分子机理仍知之甚少. 本研究中我们发现ATAD2溴结构域在较宽的浓度、温度、离子强度以及pH范围内存在聚集现象;通过NMR技术结合CD实验对ATAD2溴结构域的结构进行检测,发现该聚集行为伴随结构的变化;而二硫键不仅对结构的稳定具有重要作用,断裂分子内二硫键可以很大程度降低聚集行为的速率,暗示了ATAD2溴结构域的聚集可能与其分子功能有关. 这项工作为ATAD2溴结构域抑制剂的研发提供了潜在的新思路,进一步的研究正在进行中.

利益冲突

附件材料

图S1 突变体ATAD2 C1101A质谱结果

图S2 突变体ATAD2 C1057A/C1079A/C1101A质谱结果

(可在《波谱学杂志》期刊官网 http://magres.wipm.ac.cn获取)

参考文献

EVANS C M, PHILLIPS M, MALONE K L, et al.

Coordination of di-acetylated histone ligands by the ATAD2 bromodomain

[J]. Int J Mol Sci, 2021, 22(17): 9128.

DOI:10.3390/ijms22179128      URL     [本文引用: 1]

The ATPase Family, AAA domain-containing protein 2 (ATAD2) bromodomain (BRD) has a canonical bromodomain structure consisting of four α-helices. ATAD2 functions as a co-activator of the androgen and estrogen receptors as well as the MYC and E2F transcription factors. ATAD2 also functions during DNA replication, recognizing newly synthesized histones. In addition, ATAD2 is shown to be up-regulated in multiple forms of cancer including breast, lung, gastric, endometrial, renal, and prostate. Furthermore, up-regulation of ATAD2 is strongly correlated with poor prognosis in many types of cancer, making the ATAD2 bromodomain an innovative target for cancer therapeutics. In this study, we describe the recognition of histone acetyllysine modifications by the ATAD2 bromodomain. Residue-specific information on the complex formed between the histone tail and the ATAD2 bromodomain, obtained through nuclear magnetic resonance spectroscopy (NMR) and X-ray crystallography, illustrates key residues lining the binding pocket, which are involved in coordination of di-acetylated histone tails. Analytical ultracentrifugation, NMR relaxation data, and isothermal titration calorimetry further confirm the monomeric state of the functionally active ATAD2 bromodomain in complex with di-acetylated histone ligands. Overall, we describe histone tail recognition by ATAD2 BRD and illustrate that one acetyllysine group is primarily engaged by the conserved asparagine (N1064), the “RVF” shelf residues, and the flexible ZA loop. Coordination of a second acetyllysine group also occurs within the same binding pocket but is essentially governed by unique hydrophobic and electrostatic interactions making the di-acetyllysine histone coordination more specific than previously presumed.

BOUSSOUAR F, JAMSHIDIKIA M, MOROZUMI Y, et al.

Malignant genome reprogramming by ATAD2

[J]. Biochim Biophys Acta-Gene Regul Mech, 2013, 1829(10): 1010-1014.

DOI:10.1016/j.bbagrm.2013.06.003      URL     [本文引用: 2]

ZOU J X, REVENKO A S, LI L B, et al.

ANCCA, an estrogen-regulated AAA+ ATPase coactivator for ER alpha, is required for coregulator occupancy and chromatin modification

[J]. P Natl Acad Sci USA, 2007, 104(46): 18067-18072.

DOI:10.1073/pnas.0705814104      URL     [本文引用: 2]

AAA+ proteins play crucial roles in diverse biological processes via their ATPase-driven remodeling of macromolecular complexes. Here we report our identification of an evolutionarily conserved AAA+ protein, ANCCA/pro2000, endowed with a bromodomain that is strongly induced by estrogen in human breast cancer cells and is a direct target of protooncogene ACTR/AIB1/SRC-3. We found that ANCCA associates directly with estrogen-bound estrogen receptor (ER) α and ACTR. It is selectively recruited, upon estrogen stimulation, to a subset of ERα target genes including cyclin D1, c-myc, and E2F1 and is required for their estrogen-induced expression as well as breast cancer cell proliferation. Further studies indicate that ANCCA binds and hydrolyzes ATP and is critical for recruitment of coregulator CBP and histone hyperacetylation at the ER target chromatin. Moreover, mutations at the ATP binding motifs rendered ANCCA defective as a coactivator in mediating estrogen induction of gene expression. Together, our findings reveal an unexpected layer of regulatory mechanism in hormone signaling mediated by ANCCA and suggest that hormone-induced assembly of transcriptional coregulator complexes at chromatin is a process facilitated by AAA+ ATPase proteins.

CIRO M, PROSPERINI E, QUARTO M, et al.

ATAD2 is a novel cofactor for MYC, overexpressed and amplified in aggressive tumors

[J]. Cancer Res, 2009, 69(21): 8491-8498.

DOI:10.1158/0008-5472.CAN-09-2131      PMID:19843847      [本文引用: 1]

The E2F and MYC transcription factors are critical regulators of cell proliferation and contribute to the development of human cancers. Here, we report on the identification of a novel E2F target gene, ATAD2, the predicted protein product of which contains both a bromodomain and an ATPase domain. The pRB-E2F pathway regulates ATAD2 expression, which is limiting for the entry into the S phase of the cell cycle. We show that ATAD2 binds the MYC oncogene and stimulates its transcriptional activity. ATAD2 maps to chromosome 8q24, 4.3 Mb distal to MYC, in a region that is frequently found amplified in cancer. Consistent with this, we show that ATAD2 expression is high in several human tumors and that the expression levels correlate with clinical outcome of breast cancer patients. We suggest that ATAD2 links the E2F and MYC pathways and contributes to the development of aggressive cancer through the enhancement of MYC-dependent transcription.

KRAKSTAD C, TANGEN I L, HOIVIK E A, et al.

ATAD2 overexpression links to enrichment of B-MYB-translational signatures and development of aggressive endometrial carcinoma

[J]. Oncotarget, 2015, 6(29): 28440-28452.

DOI:10.18632/oncotarget.4955      PMID:26308378      [本文引用: 1]

We have explored the potential for clinical implementation of ATAD2 as a biomarker for aggressive endometrial cancer by investigating to what extent immunohistochemical (IHC) staining for ATAD2 is feasible, reflects clinical phenotype and molecular subgroups of endometrial carcinomas. Increased expression of the ATAD2 gene has been implicated in cancer development and progression in a number of tissues, but few studies have investigated ATAD2 expression using IHC. Here we show that high ATAD2 protein expression is significantly associated with established clinical-pathological variables for aggressive endometrial cancer, also in the subset of estrogen receptor α (ERα) positive tumors. Protein and mRNA expression of ATAD2 were highly correlated (P < 0.001), suggesting that IHC staining may represent a more clinically applicable measure of ATAD2 level in routinely collected formalin fixed paraffin embedded specimens. Gene expression alterations in samples with high ATAD2 expression revealed upregulation of several cancer-related genes (B-MYB, CDCs, E2Fs) and gene sets that previously have been linked to aggressive disease and potential for new targeting therapies. Our results support that IHC staining for ATAD2 may be a clinically applicable biomarker reflecting clinical phenotype and targetable alterations in endometrial carcinomas to be further explored in controlled clinical trials.

ZOU J X, GUO L L, REVENKO A S, et al.

Androgen-induced coactivator ANCCA mediates specific androgen receptor signaling in prostate cancer

[J]. Cancer Res, 2009, 69(8): 3339-3346.

DOI:10.1158/0008-5472.CAN-08-3440      PMID:19318566      [本文引用: 1]

Androgen receptor (AR) plays a pivotal role in prostate cancer, primarily by regulating different gene expression programs elicited by androgen, which is important for cancer cell proliferation, survival, and differentiation. It is believed that the transcriptional function of AR is mediated largely by distinct nuclear coregulators. We report here the identification of ANCCA (also known as ATAD2), a new member of the AAA+ ATPase family proteins, as a novel AR coactivator. ANCCA interacts directly with AR and enhances its transcriptional activity, and is required for androgen-stimulated expression of a specific subgroup of genes including IGF1R, IRS-2, SGK1, and survivin. Upon androgen stimulation, ANCCA together with AR is recruited to the specific AR target genes. Suppression of ANCCA expression strongly inhibited the proliferation of androgen-responsive or androgen-independent, AR-positive prostate cancer cells and caused a significant increase of cellular apoptosis. Strikingly, the ANCCA gene itself, located at chromosome 8q24, is highly induced by androgen in androgen-dependent prostate cancer cells and xenograft tumors. Although ANCCA is hardly detected in normal human prostate tissue, high levels of ANCCA are found in hormone-independent prostate cancer cell lines, xenograft tumor, and a subset of prostate cancers with high Gleason scores. Together, these findings suggest that ANCCA plays an important role in prostate cancer by mediating specific AR functions in cancer cell survival and proliferation. The possession of ATPase and bromodomain by ANCCA makes it an attractive target for the development of therapeutics for the disease.

FOURET R, LAFFAIRE J, HOFMAN P, et al.

A comparative and integrative approach identifies ATPase family, AAA domain containing 2 as a likely driver of cell proliferation in lung adenocarcinoma

[J]. Clinical Cancer Research, 2012, 18(20): 5606-5616.

DOI:10.1158/1078-0432.CCR-12-0505      PMID:22914773      [本文引用: 1]

To identify genetic changes that could drive cancer pathogenesis in never and ever smokers with lung adenocarcinoma.We analyzed the copy number and gene expression profiles of lung adenocarcinomas in 165 patients and related the alterations to smoking status. Having found differences in the tumor profiles, we integrated copy number and gene expression data from 80 paired samples.Amplifications at 8q24.12 overlapping MYC and ATAD2 were more frequent in ever smokers. Unsupervised analysis of gene expression revealed two groups: in the group with mainly never smokers, the tumors expressed genes common to normal lung; in the group with more ever smokers, the tumors expressed "proliferative" and "invasive" gene clusters. Integration of copy number and gene expression data identified one module enriched in mitotic genes and MYC targets. Its main associated modulator was ATAD2, a cofactor of MYC. A strong dose-response relationship between ATAD2 and proliferation-related gene expression was noted in both never and ever smokers, which was verified in two independent cohorts. Both ATAD2 and MYC expression correlated with 8q24.12 amplification and were higher in ever smokers. However, only ATAD2, and not MYC, overexpression explained the behavior of proliferation-related genes and predicted a worse prognosis independently of disease stage in a large validation cohort.The likely driving force behind MYC contribution to uncontrolled cell proliferation in lung adenocarcinoma is ATAD2. Deregulation of ATAD2 is mainly related to gene amplification and is more frequent in ever smokers.©2012 AACR

MURAKAMI H, ITO S, TANAKA H, et al.

Establishment of new intraperitoneal paclitaxel-resistant gastric cancer cell lines and comprehensive gene expression analysis

[J]. Anticancer Res, 2013, 33(10): 4299-4307.

PMID:24122996      [本文引用: 1]

Intraperitoneal (i.p.) chemotherapy with paclitaxel is a potential therapeutic modality for patients with peritoneal metastasis of gastric cancer. To overcome paclitaxel resistance, which is a major clinical problem with this modality, prediction of i.p. paclitaxel resistance is critically important.We developed three new i.p. paclitaxel-resistant cell lines from parental gastric cancer cell lines by an in vivo selection method using i.p. paclitaxel chemotherapy. With these cell lines, we performed gene expression profiling analysis to select up-regulated genes in i.p. paclitaxel-resistant cells and validated the genes with clinical samples.We successfully isolated nine up-regulated genes in i.p. paclitaxel-resistant cell lines compared with parental cells by microarray analysis, followed by confirmation with quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Among these, we identified four genes, namely kinesin family member-23 (KIF23), ERBB2 interacting protein (ERBB2IP), ATPase family, AAA domain containing-2 (ATAD2) and PHD finger protein (PHF19) as candidate genes for paclitaxel resistance after validation with clinical samples derived from responders and non-responders to paclitaxel treatment.These i.p. paclitaxel-resistant cell lines are ideal models for understanding the mechanism of resistance to i.p. paclitaxel and development of a new therapeutic modality. Four up-regulated genes may be potential new predictive markers for resistance to i.p. paclitaxel in patients with peritoneal metastasis of gastric cancer.

CARON C, LESTRAT C, MARSAL S, et al.

Functional characterization of ATAD2 as a new cancer/testis factor and a predictor of poor prognosis in breast and lung cancers

[J]. Oncogene, 2010, 29(37): 5171-5181.

DOI:10.1038/onc.2010.259      PMID:20581866      [本文引用: 1]

Cancer cells frequently express genes normally active in male germ cells. ATAD2 is one of them encoding a conserved factor harbouring an AAA type ATPase domain and a bromodomain. We show here that ATAD2 is highly expressed in testis as well as in many cancers of different origins and that its high expression is a strong predictor of rapid mortality in lung and breast cancers. These observations suggest that ATAD2 acts on upstream and basic cellular processes to enhance oncogenesis in a variety of unrelated cell types. Accordingly, our functional studies show that ATAD2 controls chromatin dynamics, genome transcriptional activities and apoptotic cell response. We could also highlight some of the important intrinsic properties of its two regulatory domains, including a functional cross-talk between the AAA ATPase domain and the bromodomain. Altogether, these data indicate that ATAD2 overexpression in somatic cells, by acting on basic properties of chromatin, may contribute to malignant transformation.

SHANG P, MENG F L, LIU Y D, et al.

Overexpression of ANCCA/ATAD2 in endometrial carcinoma and its correlation with tumor progression and poor prognosis

[J]. Tumor Biology, 2015, 36(6): 4479-4485.

DOI:10.1007/s13277-015-3089-8      URL     [本文引用: 1]

HONG S, BI M, YAN Z, et al.

Silencing of ATPase family AAA domain-containing protein 2 inhibits migration and invasion of colorectal cancer cells

[J]. Neoplasma, 2016, 63(6): 846-855.

PMID:27565322      [本文引用: 1]

Colorectal cancer is one of the most common malignant tumors with a high rate of distant metastasis, postoperative recurrence and mortality. ATPase family AAA domain-containing protein 2 (ATAD2), a member of ATPase family, is highly expressed in various cancers, including colorectal cancer. However, whether ATAD2 plays a role in the migration and invasion of colorectal cancer cells remains unknown. In this study, we established ATAD2 knockdown in colorectal cancer cell lines by RNA interference and found that silencing of ATAD2 inhibited the migration and invasion ability of Caco-2 and SW-480 cells. Moreover, ATAD2 silencing suppressed epithelial-mesenchymal transition (EMT), and reduced the expression and enzymatic activity of matrix metalloproteinases (MMPs) in Caco-2 and SW-480 cells. In summary, our results suggest that silencing of ATAD2 inhibits migration and invasion of colorectal cancer cells by suppressing EMT and decreasing the activity of MMPs. Hence, ATAD2 could be considered as a novel molecular marker of metastatic colorectal cancer, and it may provide new insights for clinical diagnosis and treatment of colorectal cancer.

CHEN D, MARUSCHKE M, HAKENBERG O, et al.

TOP2A, HELLS, ATAD2, and TET3 are novel prognostic markers in renal cell carcinoma

[J]. Urology, 2017, 102: 265. e1-265.e7.

DOI:10.1016/j.urology.2017.01.011      URL     [本文引用: 1]

SNIDER J, THIBAULT G, HOURY W A.

The AAA plus superfamily of functionally diverse proteins

[J]. Genome Biol, 2008, 9(4): 216.

DOI:10.1186/gb-2008-9-4-216      URL     [本文引用: 1]

HANSON P I, WHITEHEART S W.

AAA+ proteins: Have engine, will work

[J]. Nat Rev Mol Cell Biol, 2005, 6(7): 519-529.

DOI:10.1038/nrm1684      [本文引用: 1]

ZENG L, ZHOU M M.

Bromodomain: an acetyl-lysine binding domain

[J]. FEBS Lett, 2002, 513(1): 124-128.

DOI:10.1016/s0014-5793(01)03309-9      PMID:11911891      [本文引用: 1]

Bromodomains, an extensive family of evolutionarily conserved protein modules originally found in proteins associated with chromatin and in nearly all nuclear histone acetyltransferases, have been recently discovered to function as acetyl-lysine binding domains. More recent structural studies of bromodomain/peptide ligand complexes have enriched our understanding of differences in ligand selectivity of bromodomains. These new findings demonstrate that bromodomain/acetyl-lysine recognition can serve as a pivotal mechanism for regulating protein-protein interactions in numerous cellular processes including chromatin remodeling and transcriptional activation, and reinforce the concept that functional diversity of a conserved protein modular structure is achieved by evolutionary changes of amino acid sequences in the ligand binding site.

FILIPPAKOPOULOS P, PICAUD S, MANGOS M, et al.

Histone recognition and large-scale structural analysis of the human bromodomain family

[J]. Cell, 2012, 149(1): 214-231.

DOI:10.1016/j.cell.2012.02.013      PMID:22464331      [本文引用: 1]

Bromodomains (BRDs) are protein interaction modules that specifically recognize ε-N-lysine acetylation motifs, a key event in the reading process of epigenetic marks. The 61 BRDs in the human genome cluster into eight families based on structure/sequence similarity. Here, we present 29 high-resolution crystal structures, covering all BRD families. Comprehensive crossfamily structural analysis identifies conserved and family-specific structural features that are necessary for specific acetylation-dependent substrate recognition. Screening of more than 30 representative BRDs against systematic histone-peptide arrays identifies new BRD substrates and reveals a strong influence of flanking posttranslational modifications, such as acetylation and phosphorylation, suggesting that BRDs recognize combinations of marks rather than singly acetylated sequences. We further uncovered a structural mechanism for the simultaneous binding and recognition of diverse diacetyl-containing peptides by BRD4. These data provide a foundation for structure-based drug design of specific inhibitors for this emerging target family.Copyright © 2012 Elsevier Inc. All rights reserved.

PONCET-MONTANGE G, ZHAN Y A, BARDENHAGEN J P, et al.

Observed bromodomain flexibility reveals histone peptide- and small molecule ligand-compatible forms of ATAD2

[J]. Biochem J, 2015, 466(3): 37-46.

DOI:10.1042/BJ20141296      URL     [本文引用: 2]

Knowledge of how drugs are metabolized and excreted is an essential component of understanding their fate within and among target and non-target organisms. Thiabendazole (TBZ) was the first benzimidazole (BZ) to be commercially available and remains one of the most important anthelmintic drugs for medical and veterinary use. We have characterized how Caenorhabditis elegans metabolizes and excretes TBZ. We have shown that TBZ directly binds to the nuclear hormone receptor (NHR)-176 and that this receptor is required for the induction by TBZ of the cytochrome P450 (CYP) encoded by cyp-35d1. Further, RNAi inhibition of cyp-35d1 in animals exposed to TBZ causes a reduction in the quantity of a hydroxylated TBZ metabolite and its glucose conjugate that is detected in C. elegans tissue by HPLC. This final metabolite is unique to nematodes and we also identify two P-glycoproteins (PGPs) necessary for its excretion. Finally, we have shown that inhibiting the metabolism we describe increases the susceptibility of C. elegans to TBZ in wild-type and in resistant genetic backgrounds.

MOROZUMI Y, BOUSSOUAR F, TAN M J, et al.

Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells

[J]. J Mol Cell Biol, 2016, 8(4): 349-362.

DOI:10.1093/jmcb/mjv060      PMID:26459632      [本文引用: 1]

Although the conserved AAA ATPase and bromodomain factor, ATAD2, has been described as a transcriptional co-activator upregulated in many cancers, its function remains poorly understood. Here, using a combination of ChIP-seq, ChIP-proteomics, and RNA-seq experiments in embryonic stem cells where Atad2 is normally highly expressed, we found that Atad2 is an abundant nucleosome-bound protein present on active genes, associated with chromatin remodelling, DNA replication, and DNA repair factors. A structural analysis of its bromodomain and subsequent investigations demonstrate that histone acetylation guides ATAD2 to chromatin, resulting in an overall increase of chromatin accessibility and histone dynamics, which is required for the proper activity of the highly expressed gene fraction of the genome. While in exponentially growing cells Atad2 appears dispensable for cell growth, in differentiating ES cells Atad2 becomes critical in sustaining specific gene expression programmes, controlling proliferation and differentiation. Altogether, this work defines Atad2 as a facilitator of general chromatin-templated activities such as transcription.© The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

FILIPPAKOPOULOS P, PICAUD S, MANGOS M, et al.

Histone Recognition and large-scale structural analysis of the human bromodomain family

[J]. Cell, 2012, 149(1): 214-231.

DOI:10.1016/j.cell.2012.02.013      PMID:22464331      [本文引用: 1]

Bromodomains (BRDs) are protein interaction modules that specifically recognize ε-N-lysine acetylation motifs, a key event in the reading process of epigenetic marks. The 61 BRDs in the human genome cluster into eight families based on structure/sequence similarity. Here, we present 29 high-resolution crystal structures, covering all BRD families. Comprehensive crossfamily structural analysis identifies conserved and family-specific structural features that are necessary for specific acetylation-dependent substrate recognition. Screening of more than 30 representative BRDs against systematic histone-peptide arrays identifies new BRD substrates and reveals a strong influence of flanking posttranslational modifications, such as acetylation and phosphorylation, suggesting that BRDs recognize combinations of marks rather than singly acetylated sequences. We further uncovered a structural mechanism for the simultaneous binding and recognition of diverse diacetyl-containing peptides by BRD4. These data provide a foundation for structure-based drug design of specific inhibitors for this emerging target family.Copyright © 2012 Elsevier Inc. All rights reserved.

OLZSCHA H, FEDOROV O, KESSLER B M, et al.

CBP/p300 bromodomains regulate amyloid-like protein aggregation upon aberrant lysine acetylation

[J]. Cell Chem Biol, 2017, 24(1): 9-23.

DOI:S2451-9456(16)30432-9      PMID:27989401      [本文引用: 2]

Lysine acetylation is becoming increasingly recognized as a general biological principle in cellular homeostasis, and is subject to abnormal control in different human pathologies. Here, we describe a global effect on amyloid-like protein aggregation in human cells that results from aberrant lysine acetylation. Bromodomain reader proteins are involved in the aggregation process and, using chemical biology and gene silencing, we establish that p300/CBP bromodomains are necessary for aggregation to occur. Moreover, protein aggregation disturbs proteostasis by impairing the ubiquitin proteasome system (UPS) and protein translation, resulting in decreased cell viability. p300/CBP bromodomain inhibitors impede aggregation, which coincides with enhanced UPS function and increased cell viability. Aggregation of a pathologically relevant form of huntingtin protein is similarly affected by p300/CBP inhibition. Our results have implications for understanding the molecular basis of protein aggregation, and highlight the possibility of treating amyloid-like pathologies and related protein folding diseases with bromodomain inhibitor-based strategies.Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

HARNER M J, CHAUDER B A, PHAN J, et al.

Fragment-based screening of the bromodomain of ATAD2

[J]. J Med Chem, 2014, 57(22): 9687-9692.

DOI:10.1021/jm501035j      PMID:25314628      [本文引用: 1]

Cellular and genetic evidence suggest that inhibition of ATAD2 could be a useful strategy to treat several types of cancer. To discover small-molecule inhibitors of the bromodomain of ATAD2, we used a fragment-based approach. Fragment hits were identified using NMR spectroscopy, and ATAD2 was crystallized with three of the hits identified in the fragment screen.

GAY J C, ECKENROTH B E, EVANS C M, et al.

Disulfide bridge formation influences ligand recognition by the ATAD2 bromodomain

[J]. Proteins, 2019, 87(2): 157-167.

DOI:10.1002/prot.v87.2      URL     [本文引用: 1]

/