蛋白质二硫键异构酶与α-突触核蛋白的相互作用及对其聚集的影响
Inhibition of α-Synuclein Aggregation by the Interaction Between Protein Disulfide Isomerase and α-Synuclein
通讯作者: 张则婷, Tel: 027-87197391, E-mail:zhangzeting@wipm.ac.cn
第一联系人: # 共同第一作者
收稿日期: 2022-01-28
基金资助: |
|
Received: 2022-01-28
α-突触核蛋白(α-synuclein,αsyn)的错误折叠和聚集是帕金森症的疾病特征.分子伴侣蛋白质二硫键异构酶(PDI)可在体外结合αsyn的N端并抑制其聚集,但PDI的识别机制至今仍不明确.我们通过液体核磁共振(NMR)实验,发现人源PDI b'xa'可结合αsyn的N端区域.此外,硫黄素T(ThT)荧光实验结果表明PDI b'xa'会显著抑制αsyn的聚集.我们进一步利用NMR滴定实验确定了PDI主要通过b'结构域的疏水空腔结合αsyn.最后,我们以此构建了PDI结合αsyn的对接模型,并提出了PDI抑制αsyn聚集的作用机理.这一工作为理解PDI抑制αsyn聚集提供了实验依据.
关键词:
Abnormally misfolded and aggregated α-synuclein (αsyn) is the hallmark of Parkinson's disease (PD). Molecular chaperone protein disulfide isomerase (PDI) has been shown to interact with αsyn and inhibit its aggregation in vitro, but the mechanism for the recognition of αsyn by PDI is not yet clear. Herein, we used nuclear magnetic resonance (NMR) spectroscopy to identify that human PDI b'xa' bound with the N-terminal domain of αsyn, and thioflavin T (ThT) fluorescence assay revealed that b'xa' domain of PDI significantly inhibited αsyn aggregation. Furthermore, by using NMR titration, we observed that PDI bound to αsyn mainly through its hydrophobic cavity of the b' domain. Based on these findings, a docking model of PDI binding with αsyn was established and a possible mechanism of how PDI inhibits αsyn aggregation was proposed. Our work provides experimental evidences for understanding the inhibitory role of PDI in αsyn aggregation.
Keywords:
本文引用格式
裴云山, 张偲, 刘晓黎, 成凯, 张则婷, 李从刚.
PEI Yun-shan.
引言
α-突触核蛋白(α-synuclein,αsyn)是一种突触前神经元蛋白,在正常生理条件下以天然无结构可溶性的单体形式存在[1, 2].病理学研究表明,帕金森症(Parkinson’s disease,PD)患者大脑中叶存在大量黑质神经元路易小体(Lewy bodies,LB),其主要成分是异常聚集形成纤维的αsyn,这也将αsyn与PD等神经退行性疾病密切关联[3-9].αsyn含有140个氨基酸残基,按照氨基酸序列及其性质可以分为三个区域:(1)1~60号残基组成的N端区域,此区域主要是膜、分子伴侣和其他蛋白质的结合位点[10-12];(2)61~95号残基组成的非淀粉样成分(non-amyloid component,NAC)区域,被认为是αsyn聚集的必需区域[13];(3)96~140号残基组成的C端区域,该区域富含酸性氨基酸,是蛋白质、金属离子和聚胺等的结合位点[14-16].
前期研究表明分子伴侣,如热休克蛋白70(heat shock protein 70,HSP70)、热激同源蛋白70(heat shock cognate 70,HSC70)、蛋白质二硫键异构酶(protein disulfide isomerase,PDI)等,能够与αsyn的N端结合,防止αsyn的错误折叠和异常聚集,尤其是PDI甚至能反向解聚初步形成的αsyn纤维[17],这显示了伴侣蛋白在阻止αsyn聚集并调节αsyn生理功能中起到重要作用[11, 18-22].PDI是一种多功能性应激蛋白,几乎存在于所有组织细胞中,如神经组织中的丘脑中脑细胞、视网膜细胞、上皮组织的腺上皮细胞等[23].晶体结构显示,PDI的abb'xa'c等结构域以U型排列[24].其中,同源结构域a和a'都包含一个活性位点CGHC基序,该位点主要负责催化氧化还原反应中二硫键的重排[25];b和b'同源结构域则形成一个大的疏水表面,主要负责识别与结合错误折叠蛋白或未折叠蛋白[26].在功能方面,PDI是一种主要定位于内质网的关键酶和伴侣蛋白[27],负责催化内质网中新生蛋白的二硫键氧化还原反应,并协助蛋白质的正确折叠[28, 29].PDI还可以预防内质网应激和蛋白质错误折叠相关的神经毒性.有研究发现,PD患者的大脑中存在功能失调的S-亚硝基化PDI(SNO-PDI),亚硝基化修饰抑制了PDI正常参与蛋白折叠反应,从而导致细胞内发生内质网应激反应、蛋白质错误折叠等,进而引起神经元细胞的死亡[23, 30].
1 实验部分
1.1 实验试剂
三羟甲基氨基甲烷(TRIS)、4-羟乙基哌嗪乙磺酸(HEPES)、K2HPO4、NaH2PO4、NaCl、苯甲基磺酰氟(PMSF)、乙二胺四乙酸(EDTA)购自国药集团化学试剂有限公司;咪唑、2-吗啉乙磺酸(MES)、三(2-羧乙基)膦(TCEP)、1, 6-己二醇购自上海阿拉丁生化科技股份有限公司;标记所需的同位素15NH4Cl和锁场溶剂D2O均购于Cambridge Isotope Laboratories;αsyn 1-19多肽MDVFMKGLSKAKEGVAAA和αsyn 30-42多肽AGKTKEGVLYVGS均购于上海生工生物技术有限公司,基因测序由上海生工生物技术有限公司完成.
1.2 蛋白质样品的制备
将人源αsyn全长蛋白(简称αsyn)的编码序列克隆到pT7-7载体上,将N端含His6-tag和烟草蚀斑病毒蛋白酶(tobacco etch virus protease,TEV)酶切位点的人源PDI全长蛋白(简称PDI)以及PDI b'xa'结构域蛋白(简称PDI b'xa')的编码序列克隆到pET-28a载体上. 通过单点突变的方法,成功获得编码含有完整N端区域的αsyn 1-60截短体蛋白(简称αsyn 1-60)以及PDI ab结构域蛋白(简称PDI ab)的质粒.
将上述5种质粒通过热激法转化进BL21(DE3)大肠杆菌中,并分别于LB培养基和含15NH4Cl同位素的M9培养基中表达非标记和15N标记的各种目的蛋白.在220 rpm、37 ℃条件下培养至OD600达0.6~0.8后,加入终浓度为1 mmol/L的异丙基-β-D-硫代半乳糖吡喃糖苷(isopropyl 1-thio-β-D-galactopyranoside,IPTG)诱导6 h,以过量表达目的蛋白.
所有收集的菌液于高压裂菌仪裂解,并在裂解前加入PMSF及蛋白酶抑制剂cocktail(P2714-1BTL)防止目的蛋白降解.αsyn及PDI b'xa'的纯化方法参照文献[35-38];αsyn 1-60经SP阳离子交换柱(GE Healthcare)初步纯化,并于Superdex 75 26/600分子筛柱(GE Healthcare)进行细分离;PDI先使用HiLoad Ni亲和柱(GE Healthcare)除去一部分杂蛋白,再上样至Source Q(GE Healthcare)阴离子交换柱去除剩余大部分杂蛋白,最后上样至Superdex 75分子筛柱,纯度达到NMR实验要求;PDI ab通过Ni(GE Healthcare)柱和Superdex 75分子筛柱两步纯化,纯度达到95%以上.所有目的蛋白都脱盐至超纯水中,冻干备用.
根据280 nm处的摩尔消光系数(Ext. Coefficient: 5 960、1 490、45 380、21 430、23 950 mol−1·cm−1对应于αsyn、αsyn 1-60、PDI、PDI ab和PDI b'xa'),使用Nanodrop 2000采集的紫外吸收强度标定各蛋白的浓度(https://web.expasy.org/protparam/),并经十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate polyacrylamide gel electrophoresis,SDS-PAGE)进行纯度分析.
1.3 NMR谱图采集及数据处理
1H-15N HSQC实验样品的制备:15N标记的冻干αsyn样品溶于含20 mmol/L Hepes、100 mmol/L NaCl、5 mmol/L TCEP,pH=7.0的缓冲液中,并加入10% (v/v)的D2O,终浓度为0.1 mmol/L.采集1H-15N HSQC谱图后,再按等摩尔浓度比例加入非标记的PDI或者PDI ab或者PDI b'xa'等冻干蛋白并调整溶液pH,然后再次采集1H-15N HSQC谱图.
NMR滴定实验样品的制备: 15N标记的冻干PDI b'xa'样品溶于含20 mmol/L磷酸盐缓冲液(Phosphate Buffer Solution,PBS)、200 mmol/L NaCl、5 mmol/L TCEP,pH=7.0的缓冲液中,并加入10% (v/v)的D2O,终浓度为0.2 mmol/L.采集1H-15N TROSY谱图后,再以1:0、1:0.25、1:0.5、1:1、1:1.5、1:2、1:3、1:4或1:5的摩尔浓度梯度比例分别加入非标记αsyn 1-19多肽或者αsyn30-42多肽或者αsyn 1-60等冻干样品,调整溶液pH后再依次采集1H-15N TROSY谱图.
NMR谱图在配有5 mm TCI H-C/N-D CryoProbeTM超低温探头的Bruker Avance 850 MHz NMR谱仪上采集.1H-15N HSQC实验F2维和F1维谱宽分别为12 ppm和28 ppm,谱中心分别为
化学位移扰动(chemical shift perturbations,CSPs)通过(1)式[41]计算:
结合常数KD由(2)式[42]拟合得到:
1.4 αsyn聚集监测的ThT荧光实验
将冻干的αsyn、PDI、PDI ab和PDI b'xa'蛋白分别溶于纤维化缓冲液(含20 mmol/L Tris、100 mmol/L NaCl、2 mmol/L TCEP、0.01% (w/v) NaN3,pH=7.5)中至终浓度为0.6 mmol/L,配置浓度为1.5 mmol/L的ThT储液,并利用0.22 μm滤膜除去可能残留的不溶物及寡聚体大分子.按照αsyn: PDI /PDI ab/PDI b'xa' = 1:1的摩尔比例配置αsyn+PDI、αsyn+PDI ab、αsyn+PDI b'xa'混合溶液,单独αsyn对照组加入等体积缓冲液.每个混合溶液体系体积为200 μL,再加入2 μL ThT储液使ThT终浓度约为15 μmol/L.将混匀后的溶液分别加入到底透黑边的96孔板中,每个样品孔中再放置1个直径为2.5 mm的干净透明玻璃球助匀[43],使用锡箔纸将96孔板上层密封以防止长时间高温挥发,盖上盖子后利用SpectroMax i3x酶标仪(Molecular Devices)在37 ℃温度下高速环形(orbital)震荡500 s,之后每10 min检测一次ThT荧光,激发波长为444 nm、发射波长为482 nm. 纤维化聚集所需的半数时间
其中,
2 结果与讨论
2.1 αsyn N端识别PDI的b'xa'结构域的检测
αsyn作为天然无结构蛋白,其二维1H-15N HSQC谱峰在1H维的化学位移仅分布在7.7~8.5 ppm范围内,而15N维信号仍正常分布在105~131 ppm范围内.前期研究[22]显示,人源分子伴侣PDI与αsyn N端结合.为研究PDI与αsyn相互作用时PDI的识别位点,本文根据文献[31, 32]报道及序列分析将PDI划分并制备了PDI ab和b'xa'两个结构域蛋白[图 1(a)、(b)],并分别作用于αsyn.1H-15N HSQC谱图显示,与加入PDI的结果类似[图 1(d)],15N标记的αsyn样品中加入等量的PDI b'xa'后,位于N端的交叉峰信号均产生明显的化学位移扰动及谱峰强度减弱[图 1(e)、(f)],表明PDI b'xa'同样结合于αsyn的N端前20个残基和Tyr39位点附近约10个残基区域,与文献[11, 22]报道的PDI等伴侣蛋白结合于αsyn的N端结果一致. 值得注意的是,αsyn滴加PDI后会导致溶液pH发生变化,如果不调节pH,His50残基信号会产生明显化学位移扰动(调节前约
图1
图1
PDI的b'xa'结构域与αsyn的N端区域相互作用. PDI(红色)的(a)一级序列模型及(b)晶体结构(PDB ID: 4EKZ)表面图,粉色和蓝色分别代表PDI ab与PDI b'xa'结构域;(c) SDS-PAGE分析各蛋白纯度,1~5泳道分别代表αsyn1-60、αsyn、PDI ab、PDI b'xa'、PDI,M代表Marker;(d)、(e) αsyn不加(黑色)与加入等量PDI(红色)或PDI b'xa'(蓝色)的谱图叠加,图中标注了明显发生信号减弱或移动的残基;(f)加入等量PDI(红色)、PDI ab(粉色)、PDI b'xa'(蓝色)后,αsyn谱峰强度变化(I/I0);(g)基于OMH法预测αsyn序列疏水性分析图,互作区域或疏水性较强的区域用灰色标出
Fig.1
The b'xa' domain of PDI interacts with N-terminal domain of αsyn. (a) Model for PDI (red) primary sequence, PDI ab domain (pink) and PDI b'xa' domain (blue) are shown underneath. (b) Surface crystal structure of human PDI (PDB ID: 4EKZ). (c) Protein purities analyzed by SDS-PAGE. M, Marker; lane 1, αsyn1-60; lane 2, αsyn; lane 3, PDI ab; lane 4, PDI b'xa'; lane 5, PDI. (d) and (e) Spectral overlay of αsyn in the absence (black) and presence of equivalent amount of PDI (red) and PDI b'xa' (blue). Residues showing significant signal attenuation or shifts were marked. (f) Residue-resolved attenuation (I/I0) of αsyn in the presence of PDI (red), PDI ab (pink) and PDI b'xa' (blue). (g) Hydrophobic residues of αsyn predicted by OMH method, the binding and hydrophobic areas are colored gray
但对比谱峰强度减弱程度可以发现,αsyn结合PDI b'xa'的强度弱于PDI.同时我们发现,在加入PDI ab后,谱峰不发生明显变化,说明PDI的ab区域不会与αsyn结合[图 1(f)].
2.2 PDI b'xa'抑制αsyn聚集的ThT荧光实验
如图 2所示,对照组αsyn在约6 h后逐渐形成纤维;约10 h后达到半数平台期水平;约21 h后到达平台期.而加入PDI后,其产生纤维的滞后期时长tlag及达到半数平台期水平时长t1/2均延长至超过3倍,分别为约24 h及35 h.纤维动力学曲线图及t1/2统计分析显示PDI能有效抑制αsyn纤维的形成,与文献[17, 22, 31, 49]报道的PDI抑制αsyn纤维化的结论一致.而加入PDI ab的纤维生长曲线与对照组几乎一致,t1/2统计分析也表明二者没有明显差异.但是加入PDI b'xa'后,αsyn纤维化生长曲线显著被延后,具体表现为tlag由约6 h延长至约13 h,t1/2增长至约23 h.说明PDI b'xa'对αsyn的聚集也有明显的抑制作用,抑制效果约为2倍,具体参数如表 1所示.但是,此抑制效果与PDI相比,也显现出不可忽略的差异(图 2).
图2
图2
ThT荧光实验检测PDI、PDI ab及PDI b'xa'对αsyn聚集的影响. (a) αsyn不加(黑色)和加入等量PDI ab(粉色)、PDI b'xa'(蓝色)、PDI(红色)后的纤维生长动力学曲线;(b)由动力曲线拟合得到的纤维生长达半数平台期所需时间t1/2及其统计分析,ns表示无明显差异,****表示p < 0.0001;圆点表示四组平行实验所求得的数值
Fig.2
The effect on αsyn aggregation of PDI, PDI ab and PDI b'xa' detected by ThT experiment. (a) Aggregations kinetics of αsyn in the absence (black) and presence of equimolar PDI ab (pink), PDI b'xa' (blue) and PDI (red). (b) The fitted half-time (t1/2) values of aggregation and their statistical analysis. ns: not significant, ****: p < 0.0001; the dots represent the values obtained from four parallel experiments
表1 纤维化生长参数
Table 1
体系 | tlag / h | k | t1/2 / h |
αsyn | 6.05 ± 0.46 | 0.59 ± 0.14 | 9.63 ± 0.62 |
αsyn+PDI | 23.79 ± 1.90 | 0.18 ± 0.02 | 35.16 ± 1.15 |
αsyn+PDI ab | 7.42 ± 1.61 | 0.72 ± 0.08 | 10.23 ± 1.62 |
αsyn+PDI b'xa' | 12.71 ± 1.87 | 0.20 ± 0.01 | 22.63 ± 1.80 |
tlag为形成纤维前的滞后期时长;k为纤维生长速率常数;t1/2为到达半数平台期时长.
以上结果也表明,PDI的ab结构域不与αsyn相互作用,也不影响αsyn的聚集.PDI的b'xa'结构域结合αsyn的N端两个区域,同时也表现出对αsyn聚集的抑制. 这与PDI类似,但PDI b'xa'与αsyn相互作用的强度以及对αsyn聚集的抑制程度均不及PDI.相互作用与纤维化抑制作用同步的现象表明PDI通过b'xa'结构域与αsyn相互作用来影响αsyn的纤维化过程.
2.3 PDI b'xa'蛋白通过疏水空腔识别αsyn N端区域
为了进一步研究αsyn与PDI b'xa'作用的位点,我们将不同浓度的αsyn 1-19和αsyn 30-42多肽加入至15N标记的PDI b'xa'溶液中,进行了NMR滴定实验.实验结果显示,逐渐加入αsyn 1-19和αsyn 30-42多肽过程中,PDI b'xa'的TROSY谱图中部分交叉峰逐渐出现化学位移变化,这些氨基酸残基的表观化学位移为总体化学位移的加权平均,说明PDI b'xa'与αsyn 1-19和αsyn 30-42多肽的相互作用在液体NMR的时间尺度上属于快交换[图 3(a)、(d)].进一步分析PDI b'xa'谱产生的CSPs分布发现,与αsyn 1-19和αsyn 30-42多肽结合的区域为PDI的b'结构域.将上述CSPs值大于阈值(平均值+标准差)的氨基酸残基标注在PDI b'xa'三维结构上,发现αsyn 1-19和αsyn 30-42多肽主要结合于PDI b'结构域的I289、I291、I301、L302、I318、L320等残基形成的疏水空腔上,另有少数残基分散在x linker及a'结构域表面[图 3(b)、(e)].
图3
图3
PDI b'xa'与αsyn N端相互作用的NMR检测. PDI b'xa'(红色)加入(蓝色)αsyn 1-19多肽(a)、αsyn 30-42多肽(d)、αsyn 1-60蛋白(g)的1H-15N TROSY谱图,选取E239残基展示PDI b'xa'加入各底物后全局残基化学位移变化;PDI b'xa'加入αsyn 1-19多肽(b)、αsyn 30-42多肽(e)、αsyn 1-60 (h)后的CSPs柱状图,以及根据CSPs随底物αsyn 1-19多肽(c)、αsyn 30-42多肽(f)、αsyn 1-60 (i)浓度变化拟合计算解离常数. 柱状图中用CSPs的(平均值+标准差)作为阈值,高于阈值的残基标注在二维谱中,并在b'xa'的晶体结构表面用红色标记;上述高于阈值的残基通过全局拟合得到相应解离常数,离散的扰动残基通过以(平均值+2×标准差)为阈值验证并去除
Fig.3
NMR results showing the interaction between PDI b'xa' with the N-terminal domain of αsyn. Overlaid 1H-15N TROSY spectra of PDI b'xa' (red) with (blue) αsyn 1-19 (a), αsyn 30-42 (d) or αsyn 1-60 (g). E239 were selected as representative residues for global chemical shift perturbations (CSPs) during NMR titration. Residue-resolved CSPs of PDI b'xa' during titrations with αsyn 1-19(b), 30-42(e) and 1-60 (h). KD values were fitted from curves of residues with significant CSPs, as a function of αsyn 1-19(c), αsyn 30-42(f), and αsyn 1-60 (i) concentration. Residues showing significant CSPs were marked in spectra and mapped red on the crystal structure surface of PDI b'xa'. Threshold level was indicated as 'mean+standard deviation'. Disperse residues were verified and removed by the threshold of 'mean +2×standard deviation'
将上述残基的化学位移随滴定浓度作曲线并通过全局拟合得到αsyn 1-19以及αsyn 30-42多肽结合PDI b'xa'的亲和力. 结果显示αsyn 1-19多肽结合PDI b'xa'的解离常数KD约为67.7±9.1 μmol/L,αsyn 30-42多肽结合PDI b'xa'的KD约为136.3±16.0 μmol/L [图 3(c)、(f)],这表明αsyn的1-19区域结合PDI b'xa'的亲和力稍强于30-42区域.此外,我们构建了含有完整N端区域的αsyn 1-60,并研究了其与PDI b'xa'的相互作用.实验结果显示,PDI b'xa'与αsyn 1-60仍表现为快交换的相互作用[图 3(g)],并且两者的结合位点仍集中在PDI的b'结构域的疏水空腔[图 3(h)],其解离常数KD为185.3±14.2 μmol/L [图 3(i)].
对比αsyn 1-19多肽,αsyn 30-42多肽滴定时,PDI b'xa'的Thr453残基附近产生明显扰动,表明PDI在行使伴侣功能的过程中,可能需要a'结构域(如Thr453附近的残基)辅助b'结构域的疏水口袋结合αsyn底物.PDI b'xa'结合αsyn 1-60的结果显示,Thr453附近仍存在扰动,但程度略轻于αsyn 30-42多肽.这可能是1-19号残基区域与30-42号残基区域均竞争性结合PDI b'疏水口袋,但由于1-19号残基区域结合PDI b'xa'的亲和力强于30-42号残基区域,因此在αsyn 1-60结合PDI b'xa'时,主要表现为1-19号残基区域与PDI b'xa'的相互作用,而30-42号残基区域的Thr453附近的氨基酸残基结合PDI b'xa'的概率相应减少,最终表现出Thr453附近的化学位移扰动减少的现象.这些推论仍需在后续研究中进行确认.
2.4 讨论
我们的研究结果显示,PDI和PDI b'xa'结合αsyn较为疏水的前20个残基和Tyr39附近区域[图 1(f)~(g)].ThT荧光实验显示PDI和PDI b'xa'均能有效抑制αsyn聚集,而PDI ab在溶液中与αsyn没有相互作用(图 2).Cheng等[31]的研究表明,PDI的c端截短变体PDI-c对αsyn纤维的抑制作用与PDI一致.结合PDI b'xa'对αsyn的亲和力以及对聚集的抑制作用都不及PDI等结果,表明在PDI结合αsyn过程中,虽然ab结构域及c端不参与αsyn的直接相互作用,但是它们可能增强b'xa'结构域与αsyn的结合并促进其对αsyn聚集的抑制作用. 这种促进作用可能源于ab结构域对b'xa'结构域疏水口袋的保护和稳定作用[50],从而使得PDI比PDI b'xa'更稳定且高效结合底物蛋白αsyn,并使其表现出更强的聚集抑制作用.
结合NMR滴定实验结果和还原型人源PDI晶体结构(PDB ID: 4EKZ),我们使用HDOCK服务[51]对接得到PDI与αsyn1-40的结合模型如图 4(a)所示.最佳对接模型中,PDI主要通过b'上的疏水空腔结合αsyn N端区域.对接模型的局部放大图显示,αsyn1-40蛋白以1~8号和37~40号的疏水氨基酸残基将PDI b'上的疏水口袋完全占据,与我们提出的PDI结合αsyn的方式为疏水相互作用相吻合.Yagi-Utsumi等[32]的研究结果显示,结合人源αsyn31-41多肽时,HiPDI b'xa'以氧化态形式参与反应,还原态则不能结合底物.而本研究显示,人源PDI及PDI b'xa'在还原条件下均能有效结合αsyn并抑制其聚集.然而,由于人源氧化态PDI及PDI b'xa'较还原条件下更易发生多聚[24],导致无法获得高质量的NMR谱图,因此本研究未对氧化态PDI与αsyn的相互作用展开研究.由于HiPDI比人源PDI b'结构域的疏水空腔面积小,且序列比对结果显示HiPDI与人源PDI的序列相似度不高,疏水口袋b'区域(237~347号氨基酸残基)序列相似度仅为31.5%.因此结合αsyn多肽时,氧化态HiPDI参与相互作用的关键残基分布与人源PDI也有所差别[图 4(b)].但是HiPDI仍通过b'结构域疏水残基参与αsyn多肽的相互作用[32],与本研究中人源PDI通过b'结构域的疏水空腔结合αsyn的结果相似(图 4),表明两种不同来源的PDI都以疏水相互作用结合αsyn底物.
图4
图4
PDI与αsyn N端的疏水结合模式. (a) PDI结合αsyn 1-40多肽的对接模型(左)及其结合区域的局部放大图(右),HDOCK对接实验在网站服务器(http://hdock.phys.hust.edu.cn/)上运行,上传人源PDI晶体结构,αsyn1-40序列及NMR滴定鉴定的结合位点,最佳对接结果使用PyMol软件作图,PDI表面结构呈灰色,疏水口袋以红色标出,αsyn1-40卡通结构呈品红色,右图中参与结合的αsyn残基以棒状模式显示并标出.(b)人源PDI b'xa'与HiPDI b'xa'的氨基酸序列比对.序列一致性和相似性由Clustalw[52]和ESPript 3.0[53]分析所得,相似氨基酸(黑色字母填充黄色方框)以及相同氨基酸(白色字母填充红色方框)分别被标出,顶部标注人源PDI b'xa'二级结构区域,蓝色和绿色星号分别表示αsyn结合人源PDI和HiPDI的关键疏水氨基酸残基
Fig.4
Hydrophobic binding mode of PDI with the N-terminal domain of αsyn. (a) Docking model of PDI binding αsyn1-40 (left panel) and a local zoom view of binding area (right panel). The relevant residues of αsyn1-40 involving in binding PDI were depicted as magenta sticks. HDOCK experiments were performed on the web server (http://hdock.phys.hust.edu.cn/) by uploading human PDI crystal structure, amino acid sequences of αsyn1-40 and their binding sites identified by NMR titration. Optimal docking results were plotted with PyMol software, PDI molecular surface was colored gray and its hydrophobic pocket was marked in red, the magenta cartoon represented αsyn1-40 structure. (b) Alignment of amino acid sequence of human PDI b'xa' from HiPDI b'xa'. Sequence identity and similarity were calculated by Clustalw[52] and ESPript 3.0[53]. Similar amino acids were showed as black letters in yellow boxes and identical amino acids were showed as white letters in red boxes. The secondary structural domains were indicated on the top of the sequences. Blue and green asterisks represented the key hydrophobic residues of αsyn interacting with human PDI and HiPDI, respectively
文献[54]显示,Tyr39位点附近的区域被认为是αsyn聚集过程中的主控单元,缺少或突变Tyr39位点附近区域中的位点影响αsyn的聚集,结合本研究,我们认为PDI抑制αsyn纤维化聚集的主要机制在于PDI b'xa'通过b'结构域上I289、I291、I301、L302、I318、L320等疏水氨基酸残基形成的疏水空腔结合αsyn的N端的两个区域,这种相互作用可能减少了αsyn单体间的接触几率,也减弱主控单元Tyr39附近区域对αsyn聚集的控制作用,进而抑制了αsyn的纤维化.
3 结论
本文通过液体NMR技术研究了伴侣蛋白PDI与αsyn的相互作用,发现与αsyn相互作用的区域是PDI的b'xa'结构域.ThT荧光实验显示PDI b'xa'能够抑制αsyn的聚集.NMR滴定实验结果显示PDI识别αsyn并与其相互作用的位点主要位于PDI b'结构域上I289、I291、I301、L302、I318、L320等残基形成的疏水口袋.另外,我们通过HDOCK对接构建了人源PDI结合αsyn N端区域的模型.本文还提出了人源伴侣蛋白PDI通过b'xa'结构域疏水结合αsyn N端区域从而抑制其纤维化聚集的机制.这一研究为理解伴侣蛋白与αsyn的相互作用以及伴侣蛋白抑制αsyn蛋白聚集提供了实验依据.
无
参考文献
Structural disorder of monomeric α-synuclein persists in mammalian cells
[J]. ,DOI:10.1038/nature16531 [本文引用: 1]
NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded
[J]. ,DOI:10.1021/bi961799n [本文引用: 1]
A new era for understanding amyloid structures and disease
[J]. ,DOI:10.1038/s41580-018-0060-8 [本文引用: 1]
A precipitating role for truncated alpha-synuclein and the proteasome in alpha-synuclein aggregation - Implications for pathogenesis of Parkinson disease
[J]. ,
New insights into cellular α-synuclein homeostasis in health and disease
[J]. ,DOI:10.1016/j.conb.2015.07.007
α-Synuclein in Lewy bodies
[J]. ,DOI:10.1038/42166
α-synuclein – regulator of exocytosis, endocytosis, or both?
[J]. ,
The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration
[J]. ,
Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes
[J]. ,DOI:10.1038/s41593-019-0423-2 [本文引用: 1]
The N-terminus of the intrinsically disordered protein α-synuclein triggers membrane binding and helix folding
[J]. ,DOI:10.1016/j.bpj.2010.06.035 [本文引用: 1]
Regulation of α-synuclein by chaperones in mammalian cells
[J]. ,DOI:10.1038/s41586-019-1808-9 [本文引用: 2]
NMR structure of calmodulin complexed to an N-terminally acetylated α-synuclein peptide
[J]. ,DOI:10.1021/bi400199p [本文引用: 1]
A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly
[J]. ,DOI:10.1074/jbc.M008919200 [本文引用: 1]
Interaction of alpha-synuclein with divalent metal ions reveals key differences: A link between structure, binding specificity and fibrillation enhancement
[J]. ,DOI:10.1021/ja0618649 [本文引用: 1]
Ca2+ binding to alpha-synuclein regulates ligand binding and oligomerization
[J]. ,
Interaction of alpha-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement
[J]. ,DOI:10.1021/ja0618649 [本文引用: 1]
Reversal of alpha-synuclein fibrillization by protein disulfide isomerase
[J]. ,DOI:10.3389/fcell.2020.00726 [本文引用: 2]
Heat shock protein 70 inhibits alpha-synuclein fibril formation via preferential binding to prefibrillar species
[J]. ,DOI:10.1074/jbc.M413024200 [本文引用: 1]
Molecular chaperones and co-chaperones in Parkinson disease
[J]. ,
Human Hsp70 disaggregase reverses Parkinson's-linked α-synuclein amyloid fibrils
[J]. ,DOI:10.1016/j.molcel.2015.07.012
Hsc70 protein interaction with soluble and fibrillar alpha-synuclein
[J]. ,
The involvement of His50 during protein disulfide isomerase binding is essential for inhibiting α-Syn fibril formation
[J]. ,DOI:10.1021/acs.biochem.6b00280 [本文引用: 6]
S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration
[J]. ,DOI:10.1038/nature04782 [本文引用: 2]
Structural insights into the redox-regulated dynamic conformations of human protein disulfide isomerase
[J]. ,DOI:10.1089/ars.2012.4630 [本文引用: 2]
Functional properties of the individual thioredoxin-like domains of protein disulfide isomerase
[J]. ,DOI:10.1021/bi00037a009 [本文引用: 1]
The b' domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins
[J]. ,DOI:10.1093/emboj/17.4.927 [本文引用: 1]
Both the isomerase and chaperone activities of protein disulfide isomerase are required for the reactivation of reduced and denatured acidic phospholipase A2
[J]. ,DOI:10.1093/emboj/16.3.651 [本文引用: 1]
The human protein disulphide isomerase family: substrate interactions and functional properties
[J]. ,DOI:10.1038/sj.embor.7400311 [本文引用: 1]
Molecular chaperones, stress proteins and redox homeostasis
[J]. ,DOI:10.1002/biof.5520170124 [本文引用: 1]
S-nitrosylated protein disulfide isomerase contributes to mutant SOD1 aggregates in amyotrophic lateral sclerosis
[J]. ,DOI:10.1111/jnc.12046 [本文引用: 1]
Domain a' of protein disulfide isomerase plays key role in inhibiting alpha-synuclein fibril formation
[J]. ,DOI:10.1007/s12192-009-0157-2 [本文引用: 4]
Structural basis of redox-dependent substrate binding of protein disulfide isomerase
[J]. ,DOI:10.1038/srep13909 [本文引用: 4]
Alpha-突触核蛋白与完整线粒体相互作用的NMR研究
[J]. ,
Interactions between α-synuclein and intact mitochondria studied by NMR
[J].
探测应答调控蛋白PhoBNF20D自由态中存在的Pre-Active构象
[J]. ,
Visualizing the pre-active conformation of response regulator PhoBNF20D in its apo state
[J].
Structure of membrane-bound alpha-synuclein studied by site-directed spin labeling
[J]. ,DOI:10.1073/pnas.0400553101 [本文引用: 1]
Dependence of alpha-synuclein aggregate morphology on solution conditions
[J]. ,DOI:10.1016/S0022-2836(02)00775-1
低盐和高盐环境下α-synuclein构象的19F NMR研究
[J]. ,
Salt content-dependent conformational changes of alpha-synuclein studied by 19F NMR
[J].
Backbone resonance assignment of PDI b'xa' domain construct
[J]. ,DOI:10.1007/s12104-021-10038-3 [本文引用: 1]
NMRPipe: A multidimensional spectral processing system based on UNIX pipes
[J]. ,
NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy
[J]. ,DOI:10.1093/bioinformatics/btu830 [本文引用: 1]
Using chemical shift perturbation to characterise ligand binding
[J]. ,DOI:10.1016/j.pnmrs.2013.02.001 [本文引用: 1]
Quantitative analysis of multisite protein-ligand interactions by NMR: binding of intrinsically disordered p53 transactivation subdomains with the TAZ2 domain of CBP
[J]. ,DOI:10.1021/ja209936u [本文引用: 1]
Alpha-synuclein stepwise aggregation reveals features of an early onset mutation in Parkinson's disease
[J]. ,DOI:10.1038/s42003-019-0598-9 [本文引用: 1]
The presence of an air-water interface affects formation and elongation of α-synuclein fibrils
[J]. ,DOI:10.1021/ja412105t [本文引用: 1]
NMR determination of pK(a) values in α-synuclein
[J]. ,
Correlation of sequence hydrophobicities measures similarity in three-dimensional protein structure
[J]. ,DOI:10.1016/0022-2836(83)90041-4 [本文引用: 1]
Molecular mechanism of thioflavin-T binding to amyloid fibrils
[J]. ,DOI:10.1016/j.bbapap.2010.04.001 [本文引用: 1]
Mechanism of thioflavin T binding to amyloid fibrils
[J]. ,DOI:10.1016/j.jsb.2005.06.006 [本文引用: 1]
PDI抑制α-synuclein纤维化聚集作用机制研究
[J]. ,
Inhibition mechanisms of protein disulfide isomerase on α-synuclein fibril aggregation
[J].
Mapping of the ligand-binding site on the b′ domain of human PDI: interaction with peptide ligands and the x-linker region
[J]. ,DOI:10.1042/BJ20090565 [本文引用: 1]
HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy
[J]. ,DOI:10.1093/nar/gkx407 [本文引用: 1]
Clustal W and Clustal X version 2.0
[J]. ,DOI:10.1093/bioinformatics/btm404 [本文引用: 2]
Deciphering key features in protein structures with the new ENDscript server
[J]. ,DOI:10.1093/nar/gku316 [本文引用: 2]
A short motif in the N-terminal region of α-synuclein is critical for both aggregation and function
[J]. ,DOI:10.1038/s41594-020-0384-x [本文引用: 1]
/
〈 | 〉 |