[1] Oh C H, Ryu Y C, Hyun J H, et al. Dynamic range expansion of receiver by using optimized gain adjustment for high-field MRI[J]. Concept Magn Reson A, 2010, 36A: 243-254.[2] Elliott M A, Insko E K, Greenman R L, et al. Improved resolution and signal-to-noise ratio in MRI via enhanced signal digitization[J]. J Magn Reson, 1997, 130: 300-304.[3] Maudsley A A. Dynamic range improvement in NMR imaging using phase scrambling[J]. J Magn Reson, 1987, 76: 287-305.[4] Wedeen V J, Chao Y, Ackerman J L, et al. Dynamic range compression in MRI by means of nonlinear gradient pulse[J]. Magn Reson Med, 1988, 6: 287-295.[5] Oh C H, Hilal S K, Wu E X, et al. Phase-scrambled RF excitation for 3D volume-selective multislice NMR imaging[J]. Magn Reson Med, 1992, 28: 290-299.[6] Johnson G, Wu E X, Hilal S K, et al. Optimized phase scrambling for RF phase encoding[J]. J Magn Reson B, 1994, 103: 59-63.[7] Maudsley A A. Sensitivity in fourier imaging[J]. J Magn Reson, 1986, 68: 363-366.[8] Behin R, Bishop J, Henkelman R M, et al. Dynamic range requirements for MRI[J]. Concept Magn Reson B, 2005, 26B: 28-35.[9] Otake Y, Kose K, Haishi T, et al. A solution to the dynamic range problem in MRI using a parallel imaging acquisition[J]. Concept Magn Reson B, 2006, 29B: 161-167.[10] Takeda K, Takegoshi K. Noise reduction by dynamic signal preemphasis[J]. J Magn Reson, 2011, 208: 305-308.[11] Ning R, Dai Y, Yang G, et al. A digital receiver with fast frequency- and gain-switching capabilities for MRI systems[J]. Magn Reson Mater Phy, 2009, 22: 333-342.[12] Bollenbeck J, Vester M, Oppelt R, et al. ISMRM Annual Meeting[C]. Miami: The International Society for Magnetic Resonance in Medicine, 2005.[13] Delsuc M A, Lallemand J Y. Improvement of dynamic range in NMR by oversampling[J]. J Magn Reson, 1986, 69: 504-507.[14] Li Rui(李睿), Xiao Liang(肖亮), Wang Wei-min(王为民), et al. The design of a digital receiver system for MRI scanners(磁共振成像信号的数字化接收系统设计)[J]. Chinese J Magn Reson(波谱学杂志), 2009, 26(3): 359-368.[15] Xiao Liang(肖亮), Tang Wei-nan(汤伟男), Wang Wei-min(王为民), et al. An FPGA-based single-chip gradient control module for magnetic resonance imaging(基于单片FPGA 的磁共振成像梯度计算模块)[J]. Chinese J Magn Reson(波谱学杂志), 2010, 27(2): 163-171. [16] Wang Hong(王洪), Sun Hong-yu(孙宏宇), Tang Wei-nan(汤伟男), et al. An FPGA-based multi-channel receiver module for magnetic resonance imaging (基于单片FPGA 的多通道磁共振成像接收模块)[J]. Chinese J Magn Reson(波谱学杂志), 2012, 29(2): 239-247.[17] Wang Hong(王洪), Xiong Ze-chong(熊泽冲), Lin Xian-chai(林先钗), et al. A computer-on-module based highperformance control interface with gigabit ethernet for magnetic resonance imaging spectrometer(基于模块计算机的千兆网磁共振谱仪控制接口)[J]. Chinese J Magn Reson(波谱学杂志), 2012, 29(4): 499-507.[18] Fuderer M. The information content of MR images[J]. IEEE T Med Imaging, 1988, 7: 368-380.[19] Watts R, Wang Y. k-space interpretation of the Rose model: noise limitation on the detectable resolution in MRI[J]. Magn Reson Med, 2002, 48: 550-554.[20] Bennett W R. Spectra of quantized signals[J]. Bell System Technical J, 1948, 27: 446-471.[21] McCann A J, Workman A, McGrath C, et al. A quick and robust method for measurement of signal-to-noise ratio in MRI[J]. Phys Med Biol, 2013, 58: 3 775-3 790. |