Chinese Journal of Magnetic Resonance ›› 2021, Vol. 38 ›› Issue (4): 543-551.doi: 10.11938/cjmr20212906
Previous Articles Next Articles
Han-di CHEN,Hai-yu KONG,Zhen-chao ZHAO,Wei-ping ZHANG*()
Received:
2021-04-11
Online:
2021-12-05
Published:
2021-05-10
Contact:
Wei-ping ZHANG
E-mail:wpzhang@dlut.edu.cn
CLC Number:
Han-di CHEN,Hai-yu KONG,Zhen-chao ZHAO,Wei-ping ZHANG. Exploring the Na+ Locations and Al Distributions in SSZ-39 Zeolite by Solid-State NMR Spectroscopy and DFT Calculations[J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 543-551.
Table 1
Isotropic chemical shifts (δiso), second-order quadrupolar interaction constants (Cq), and asymmetry parameters (η) of Al atoms in Na-SSZ-39 zeolites with various Si/Al ratios obtained by 27Al MQ MAS NMR
AlIV-1 | Content/% | AlIV-2 | Content/% | AlVI | Content/% | ||
Na-SSZ-39(20) | δiso/ppm | 63 | 58 | 1 | |||
Cq/MHz | 3.5 | 65 | 4.8 | 22 | 3.5 | 13 | |
η | 0.6±0.1 | 0.3±0.1 | 0.5±0.1 | ||||
Na-SSZ-39(14) | δiso/ppm | 63 | 58 | 0 | |||
Cq/MHz | 3.6 | 39 | 5.8 | 55 | 1.9 | 6 | |
η | 0.6±0.1 | 0.2±0.1 | 0.3±0.1 | ||||
Na-SSZ-39(6) | δiso/ppm | 63 | 59 | ||||
Cq/MHz | 3.6 | 62 | 4.6 | 38 | / | / | |
η | 0.6±0.1 | 0.2±0.1 |
Table 2
Isotropic chemical shifts (δiso), second-order quadrupolar interaction constants (cq) and asymmetry parameters (η) of the Na+ sites in Na-SSZ-39 zeolites with various Si/Al ratios obtained by 23Na MQ MAS NMR and DFT calculations
SIa0 | SIIa0 | SIIa1 | SIII’a0 | SIII’a1 | SIII’b | ||
Na-SSZ-39(20) | δiso/ppm | 5±1.0 | -10±1.0 | -31±2.0 | -38±1.0 | -10±1.0 | |
Cq/MHz | 1.9±0.1 | / | 3.8±0.2 | 2.4±0.1 | 2.7±0.2 | 2.7±0.1 | |
η | 0.6±0.1 | 0.3±0.1 | 0.6±0.1 | 0.3±0.1 | 0.5±0.1 | ||
Na-SSZ-39(14) | δiso/ppm | 4±1.0 | -20±2.0 | -9±2.0 | -31±2.0 | -38±2.0 | |
Cq/MHz | 1.8±0.1 | 3.0±0.2 | 4.0±0.2 | 2.5±0.1 | 2.7±0.2 | / | |
η | 0.6±0.1 | 0.7±0.1 | 0.3±0.1 | 0.6±0.1 | 0.3±0.1 | ||
Na-SSZ-39(6) | δiso/ppm | 5±1.0 | -20±2.0 | -32±2.0 | -38±1.0 | -9±2.0 | |
Cq/MHz | 2.6±0.1 | 3.0±0.2 | / | 2.5±0.1 | 2.7±0.2 | 2.7±0.1 | |
η | 0.6±0.1 | 0.7±0.1 | 0.6±0.1 | 0.3±0.1 | 0.4±0.1 | ||
Calculated results | δiso/ppm | -22 | -11 | -34 | -38 | ||
Cq/MHz | / | 3.4 | 4.2 | 2.8 | 2.5 | / | |
η | 0.5 | 0.7 | 0.5 | 0.5 |
1 | 徐如人, 庞文琴, 等. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004. |
2 |
CORMA A . From microporous to mesoporous molecular sieve materials and their use in catalysis[J]. Chem Rev, 1997, 97 (6): 2373- 2420.
doi: 10.1021/cr960406n |
3 | MOLINER M , FRANCH C , PALOMARES E , et al. Cu-SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of Nox[J]. Catal Commun, 2012, 48 (66): 8264- 8266. |
4 |
WANG Y , LI G G , ZHANG S Q , et al. Promoting effect of Ce and Mn addition on Cu-SSZ-39 zeolites for NH3-SCR reaction: Activity, hydrothermal stability, and mechanism study[J]. Chem Eng J, 2020, 393, 124782.
doi: 10.1016/j.cej.2020.124782 |
5 |
MEMIOGLU O , IPEK B . A potential catalyst for continuous methane partial oxidation to methanol using N2O: Cu-SSZ-39[J]. Chem Commun, 2021, 57 (11): 1364- 1367.
doi: 10.1039/D0CC06534J |
6 | MARTIN GARCIA N , LI Z B , MARTINEZ TRIGUERO L J , et al. Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process[J]. Catal Commun, 2016, 52 (36): 6072- 6075. |
7 |
DUSSELIER M , DEIMUND M A , SCHMIDT J E , et al. Methanol-to-olefins catalysis with hydrothermally treated zeolite SSZ-39[J]. ACS Catal, 2015, 5 (10): 6078- 6085.
doi: 10.1021/acscatal.5b01577 |
8 |
DĚDECEK J , CAPEK L , KAUCKY D , et al. Siting and distribution of the Co ions in Beta zeolite: A UV-Vis-NIR and FTIR study[J]. J Catal, 2002, 211 (1): 198- 207.
doi: 10.1016/S0021-9517(02)93697-3 |
9 |
VJUNOV A , FULTON J L , HUTHWELKER T , et al. Quantitatively probing the Al distribution in zeolites[J]. J Am Chem Soc, 2014, 136 (23): 8296- 8306.
doi: 10.1021/ja501361v |
10 |
GREY C P , POSHNI F I , GUALTIERI A F . Combined MAS NMR and X-ray powder diffraction structural characterization of hydrofluorocarbon-134 adsorbed on zeolite NaY: Observation of cation migration and strong sorbatecation interactions[J]. J Am Chem Soc, 1997, 119 (8): 1981- 1989.
doi: 10.1021/ja963565x |
11 |
PENG L M , GUO X F , DING W P . 17O Solid-state NMR studies of zeolites: A review[J]. Chinese J Magn Reson, 2009, 26 (2): 173- 187.
doi: 10.3969/j.issn.1000-4556.2009.02.002 |
彭路明, 郭学锋, 丁维平. 沸石17O固体核磁共振研究进展[J]. 波谱学杂志, 2009, 26 (2): 173- 187.
doi: 10.3969/j.issn.1000-4556.2009.02.002 |
|
12 |
YU Z W , ZHENG A M , WANG Q , et al. Acidity characterization of solid acid catalysts by solid-state NMR spectroscopy: A review on recent progresses[J]. Chinese J Magn Reson, 2010, 27 (4): 485- 515.
doi: 10.3969/j.issn.1000-4556.2010.04.001 |
喻志武, 郑安民, 王强, 等. 固体核磁共振研究固体酸催化剂酸性进展[J]. 波谱学杂志, 2010, 27 (4): 485- 515.
doi: 10.3969/j.issn.1000-4556.2010.04.001 |
|
13 | GAO X Z , ZHANG Y , WANG X M , et al. Structure and acidity changes in ultra-stable Y zeolites during hydrothermal aging: A solid-state NMR spectroscopy study[J]. Chinese J Magn Reson, 2020, 37 (1): 95- 103. |
高秀枝, 张翊, 王秀梅, 等. NMR研究超稳Y分子筛水热老化过程中结构与酸性的变化[J]. 波谱学杂志, 2020, 37 (1): 95- 103. | |
14 |
MASSIOT D , TOUZO B , TRUMEAU D , et al. Two-dimensional magic-angle spinning isotropic reconstruction sequences for quadrupolar nuclei[J]. Solid State Nucl Mag, 1996, 6 (1): 73- 83.
doi: 10.1016/0926-2040(95)01210-9 |
15 |
LI S K , ZHAO Z C , ZHAO R R , et al. Aluminum location and acid strength in an aluminum-rich Beta zeolite catalyst: A combined density functional theory and solid-state NMR study[J]. ChemCatChem, 2017, 9 (8): 1494- 1502.
doi: 10.1002/cctc.201601623 |
16 |
ZHAO R R , Zhao Z C , LI S K , et al. Insights into the correlation of aluminum distribution and Bronsted acidity in H-Beta zeolites from solid-state NMR spectroscopy and DFT calculations[J]. J Phys Chem Lett, 2017, 8 (10): 2323- 2327.
doi: 10.1021/acs.jpclett.7b00711 |
17 | LI S H , LI S K , XING Y D , et al. Aluminum distribution and Brønsted acidity of Al-Rich SSZ-13 zeolite: A combined DFT calculation and solid-state NMR study[J]. Acta Phys Chim Sin, 2020, 36 (4): 1903021. |
李诗涵, 李世坤, 邢友东, 等. DFT计算结合固体NMR研究富铝SSZ-13的铝分布和Brønsted酸性[J]. 物理化学学报, 2020, 36 (4): 1903021. | |
18 |
KLEIN P , PASHKOVA V , THOMAS H M , et al. Local structure of cationic sites in dehydrated zeolites inferred from 27Al MAS NMR and DFT calculations. A study on Li-, Na-, and K-chabazite[J]. J Phys Chem C, 2016, 120 (26): 14216- 14225.
doi: 10.1021/acs.jpcc.6b04391 |
19 |
SKLENAK S , DĚDECEK J , LI C B , et al. Aluminum siting in silicon-rich zeolite frameworks: A combined high-resolution 27Al NMR spectroscopy and quantum mechanics/molecular mechanics study of ZSM-5[J]. Angew Chem Int Ed, 2007, 46 (38): 7286- 7289.
doi: 10.1002/anie.200702628 |
20 | OMEGNA A , VASIC M , VAN BOKHOVEN R A , et al. Dealumination and realumination of microcrystalline zeolite beta: An XRD, FTIR and quantitative multinuclear (MQ) MAS NMR study[J]. Phys Chem Chem Phys, 2003, 6 (2): 88- 99. |
21 |
HUNGER M , SARV P , SAMOSON A . Two-dimensional triple-quantum 23Na MAS NMR spectroscopy of sodium cations in dehydrated zeolites[J]. Solid State Nucl Mag, 1997, 9 (2-4): 115- 120.
doi: 10.1016/S0926-2040(97)00051-9 |
22 |
ZHAO Z C , XING Y D , LI S H , et al. Mapping Al distributions in SSZ-13 zeolites from 23Na solid-state NMR spectroscopy and DFT calculations[J]. J Phys Chem C, 2018, 122 (18): 9973- 9979.
doi: 10.1021/acs.jpcc.8b01423 |
23 | MOINI A, MCGUIRE R, MULLER U. A Process for preparing a zeolitic material comprising a metal M and having framework type AEI: WO2018210815-A1[P]. 2018-11-22. |
24 | XIE P , ZHANG Y Z , LI S L , et al. Isomorphous substitution of faujusite with (NH4)2 SiF6 Ⅱ. dealumination of (Nh4Na)Y with different na contents and nay[J]. Chinese Journal of Catalysis, 1993, 12 (1): 32- 38. |
谢鹏, 张盈珍, 李淑莲, 等. 八面沸石用(NH4)2 SiF6脱铝补硅的研究[J]. 催化学报, 1993, 12 (1): 32- 38. | |
25 |
ZHU X X , LIU S L , SONG Y Q , et al. Post-treatment with ammonium hexafluorosilicate: An effective way to synthesize high silica MCM-22 zeolite[J]. Catal Commun, 2005, 6 (11): 742- 746.
doi: 10.1016/j.catcom.2005.07.005 |
26 | SOMMER L , MORES D , SVELLE S , et al. Mesopore formation in zeolite H-SSZ-13 by desilication with NaOH[J]. Micropor Mesopor Mat, 2013, 132 (3): 384- 394. |
27 |
AMOUREUX J P , FERNANDEZ C , STEUERNAGEL S . Z filtering in MQ MAS NMR[J]. J Magn Reson, 1996, 123 (1): 116- 118.
doi: 10.1006/jmra.1996.0221 |
28 |
MASSIOT D , FAYON F , CAPRON M , et al. Modelling one- and two-dimensional solid-state NMR spectra[J]. Magn Reson Chem, 2002, 40 (1): 70- 76.
doi: 10.1002/mrc.984 |
29 |
ZHENG A M , ZHANG H , LEI C , et al. Relationship between 1H chemical shifts of deuterated pyridinium ions and Brønsted acid strength of solid acids[J]. J Phys Chem B, 2007, 111 (12): 3085- 3089.
doi: 10.1021/jp067340c |
30 | FRISCH M J, TRUCKS G W, SCHLEGE H B et al. Gaussian 09, Revision D. 01; Gaussian Inc: Wallingford, CT, 2013 |
31 |
LI Y H , DENG J L , SONG W Y , et al. Nature of Cu species in Cu-SAPO-18 catalyst for NH3-SCR: combination of experiments and DFT calculations[J]. J Phys Chem C, 2016, 120 (27): 14669- 14680.
doi: 10.1021/acs.jpcc.6b03464 |
32 | SMITH L J , ECKERT H , CHEETHAM A K . Potassium cation effects on site preferences in the mixed cation zeolite Li, Na-chabazite[J]. Chem Mater, 2012, 13 (2): 385- 391. |
33 |
PAOLUCCI C , PAREKH A A , KHURANA I , et al. Catalysis in a cage: Condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites[J]. J Am Chem Soc, 2016, 138 (18): 6028- 6048.
doi: 10.1021/jacs.6b02651 |
[1] | Wen-jie YANG,Jun HUANG. Analysis of Local Structure, Acidic Property and Activity of Solid Acids by Solid-State Nuclear Magnetic Resonance Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 460-473. |
[2] | Xi-feng XIA,Wen-jing ZHANG,Zhi-ye LIN,Xiao-kang KE,Yu-jie WEN,Fang WANG,Jun-chao CHEN,Lu-ming PENG. Solid-State NMR Studies on the Surface Structure and Properties of Oxide Nanomaterials [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 533-542. |
[3] | Yong-xiang WANG,Qiang WANG,Jun XU,Qing-hua XIA,Feng DENG. The Effects of Ammonium Hexafluorosilicate Post-Treatment on the Acidity of H-ZSM-5 Zeolite Studied by Solid-State NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 514-522. |
[4] | Zi-chun WANG,Jun HUANG,Yi-jiao JIANG. Solid-State NMR Spectroscopy Studies of Enhanced Acidity of Silica-Aluminas Based on Penta-Coordinated Aluminum Species [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 552-570. |
[5] | Yao XIAO,Chang-jiu XIA,Xian-feng YI,Feng-qing LIU,Shang-bin LIU,An-min ZHENG. Progress in the Studies on Sn-Zeolites by Solid-State Nuclear Magnetic Resonance [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 571-584. |
[6] | Shu-shu GAO,Shu-tao XU,Ying-xu WEI,Zhong-min LIU. Applications of Solid-State Nuclear Magnetic Resonance Spectroscopy in Methanol-to-Olefins Reaction [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 433-447. |
[7] | Xin CHEN,Ying-yi FU,Bin YUE,He-yong HE. Acidity and Basicity of Solid Acid Catalysts Studied by Solid-State NMR [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 491-502. |
[8] | LEI Zhen-yu, LIANG Xin-miao, LEI You-yi, YANG Li, FENG Ji-wen. Progresses in Solid-State NMR Studies on Carbon Anode Materials for Lithium/Sodium-Ion Batteries [J]. Chinese Journal of Magnetic Resonance, 2020, 37(1): 28-39. |
[9] | WEI Ling, ZHANG Shan-min. Suppressing Background 13C NMR Signal From the Probe Head by Phase Incremented Pulses [J]. Chinese Journal of Magnetic Resonance, 2020, 37(1): 123-130. |
[10] | LIN Ze-yu, HUO Hua, WANG Qi-hang. Progress in Solid-State NMR Studies of Monoclinic Lithium Vanadium Phosphate [J]. Chinese Journal of Magnetic Resonance, 2020, 37(1): 16-27. |
[11] | WANG Jia-xin, FENG Ji-wen, CHEN Jun-fei, WANG Li-ying, LIU Chao-yang. Design and Fabrication of a Magic-Angle Spinning Rotor for Solid-State Nuclear Magnetic Resonance Probe [J]. Chinese Journal of Magnetic Resonance, 2019, 36(4): 446-455. |
[12] | YAN Xiao-jing, HU Bing-wen. Probing 15N-15N Correlations in g-C3N4 Samples with Solid-State NMR SHA+ Pulse Sequence [J]. Chinese Journal of Magnetic Resonance, 2016, 33(3): 361-367. |
[13] | Tian Jianguang, Du Zehan. SPATIAL DISTRIBUTION OF RADIOFREQUENCY FIELD B1 PRODUCED BY 31P NMR SURFACE-COIL PROBE [J]. Chinese Journal of Magnetic Resonance, 1998, 15(5): 447-452. |
[14] | Wu Fan, Peng Pn, Lu Wanzhen. A DATABASE FOR NMR CHEMICAL SHIFT OF HYDROCARBONS AND CHEMICAL SHIFT DISTRTRIBUTION OF EACH SUBGROUP [J]. Chinese Journal of Magnetic Resonance, 1996, 13(4): 393-402. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||