[1] CHANG D S, XU C, CUI C P. MRI diagnosis of cerebellopontine angle tumors[J]. Chinese J PMI, 2014, 15(3):190-193. 常东胜, 徐成, 崔翠萍. 桥小脑角区肿瘤的磁共振成像诊断[J]. 实用医学影像杂志, 2014, 15(3):190-193. [2] NIU L, ZHOU X M, DUAN C F, et al. Differentiation researches on the meningioma subtypes by radiomics from contrast enhanced MRI, A preliminary study[J]. World Neurosurgery, 2019, 126:646-652. [3] LIU Z Y, SUN Z G, ZHANG X F. MRI diagnosis and differential diagnosis of meningioma, auditory neuroma and trigeminal nerve tumors in cerebellopontine angle area[J]. Chinese J Misdiagn, 2010, 10(30):7390.刘智勇, 孙志刚, 张秀芳. 桥小脑角区脑膜瘤、听神经瘤和三叉神经瘤的MRI诊断与鉴别诊断[J]. 中国误诊学杂志, 2010, 10(30):7390. [4] YE D Q, XU S H, HUANG Y C, et al. MRI diagnosis value of cerebellopontine angle tumor[J]. Chinese and Foreign Medical Research, 2017, 15(1):50-51.叶德湫, 许淑惠, 黄永础, 等. 桥小脑角区肿瘤的MRI诊断价值[J]. 中外医学研究, 2017, 15(1):50-51. [5] SHEN J H, ZHANG T, FANG L J, et al. Conventional MRI, DWI characteristics and immunocytochemistry of fibrous meningioma[J]. Chinese J Medical Image, 2016, 26(12):2164-2167. 沈金花, 张涛, 方龙江, 等. 纤维型脑膜瘤的常规MRI、DWI及免疫组化分析[J]. 医学影像学杂志, 2016, 26(12):2164-2167. [6] MENZE B H, JAKAB A, BAUER S, et al. The multimodal brain tumor image segmentation benchmark (BRATS)[J]. IEEE Trans Med Imaging, 2015, 34(10):1993-2024. [7] MA Y, GUO H, WANG Q S, et al. Correlations between morphological characteristics and expression levels of specific molecular biomarkers in glioblastoma[J]. Chinese J Magn Reson, 2018, 35(1):22-30. 马芸, 郭虹, 王秋实, 等. 基于影像的形态学特征与胶质母细胞瘤特征分子表达的相关性研究[J]. 波谱学杂志, 2018, 35(1):22-30. [8] 黄唯. 脑肿瘤MRI图像分类与肝病理图像分级方法研究[D]. 广州:南方医科大学, 2016. [9] TANG X M. CT differential diagnosis of meningioma involving the internal auditory canal and acoustic neuroma[J]. Guide of China Medicine, 2014, 12(27):218-219.唐宪明. 桥小脑角区脑膜瘤累及内听道与听神经瘤的CT鉴别诊断[J]. 中国医药指南, 2014, 12(27):218-219. [10] CHEN L, ZHANG C, TONG M L, et al. Analysis of the differential diagnosis of meningioma and auditory neuroma in the cerebellar horn area by MRI[J]. Contemporary Medicine Forum, 2016, 14(22):134-136.陈玲, 张超, 童梦玲, 等. 用MRI检查对桥小脑角区脑膜瘤和听神经瘤进行鉴别诊断的效果分析[J]. 当代医药论丛, 2016, 14(22):134-136. [11] PING X X, MENG Q, TIAN X, et al. MRI findings of lesions in the cerebellopontine angle[J]. Chinese J Medical Image, 2014, 24(1):12-15, 20. 平小夏, 孟倩, 田霞, 等. 桥小脑角区病变的MRI表现[J]. 医学影像学杂志, 2014, 24(1):12-15, 20. [12] ZHANG M, ZHANG H Q. Application of MRI in diagnosis of cerebellopontine angle tumor and its clinical value[J]. Medical Innovation of China, 2018, 15(34):25-29. 张敏, 张海青. MRI在桥小脑角区肿瘤患者病情诊断中的应用及其临床价值分析[J]. 中国医学创新, 2018, 15(34):25-29. [13] SONG I, KIM H J, JEON P B. Deep learning for real-time robust facial expression recognition on a smartphone[C]. Las Vegas:2014 IEEE International Conference on Consumer Electronics (ICCE), 2014. [14] PAYAN A, MONTANA G. Predicting Alzheimer's disease:a neuroimaging study with 3D convolutional neural networks[J]. Computer Science, 2015:arXiv:1502.02506. [15] GUPTA A, MAIDA A S, AYHAN M S. Natural image bases to represent neuroimaging data[C]. Atlanta:Proceedings of the 30th international conference on machine learning, 2013:987-994. [16] SOOMRO M H, DE COLA G, CONFORTO S, et al. Automatic segmentation of colorectal cancer in 3D MRI by combining deep learning and 3D level-set algorithm-a preliminary study[C]. Tunis:2018 IEEE 4th Middle East Conference on Biomedical Engineering (MECBME), 2018. [17] LIANG C X, LI M Q, BIAN Z Y, et al. Establishment of a deep feature-based classification model for distinguishing benign and malignant[J]. J Southern Medical University, 2019, 39(1):88-92. 梁翠霞, 李明强, 边兆英, 等. 基于深度学习特征的乳腺肿瘤分类模型评估[J]. 南方医科大学学报, 2019, 39(1):88-92. [18] LING Z G, LIANG Y, WANG Y N, et al. Adaptive extended piecewise histogram equalisation for dark image enhancement[J]. IET Image Processing, 2015, 9(11):1012-1019. [19] KHAN R, TALHA M, KHATTAK A S, et al. Realization of balanced contrast limited adaptive histogram equalization (B-CLAHE) for adaptive dynamic range compression of real time medical images[C]. Islamabad:Proceedings of 201310th International Bhurban Conference on Applied Sciences & Technology (IBCAST), 2013. [20] MAGUDEESWARAN V, FENSHIA SINGH J. Contrast limited fuzzy adaptive histogram equalization for enhancement of brain images[J]. Int J Imag Syst Tech, 2017, 27(1):98-103. [21] PENG S L, JIANG H Y, WANG H X, et al. Modulation classification using convolutional neural network based deep learning model[C]. Newark:201726th Wireless and Optical Communication Conference (WOCC), 2017. [22] CHUMERIN N. Convolutional neural network[M]//KIM P. MATLAB deep learning. Apress, Berkeley, CA. 2017:121-147. [23] CS231n. Convolutional Neural Networks for Visual Recognition[OL]. 2019. http://cs231n.github.io/. [24] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]. Lille:ICML'15 Proceedings of the 32nd International Conference on International Conference on Machine Learning, 2015, 37:448-456. [25] KRIZHEVSKY A, SUTSKEVER I, HINTON G E, et al. ImageNet classification with deep convolutional neural networks[C]. Lake Tahoe:NIPS'12 Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012, 1:1097-1105. [26] GOLD S, RANGARAJAN A. Softmax to softassign:neural network algorithms for combinatorial optimization[J]. Journal of Artificial Neural Network, 1995, 2(4):381-399. [27] EL-SAWY, EL-BAKRY H, LOEY M. CNN for handwritten arabic digits recognition based on LeNet-5[C]. International Conference on Advanced Intelligent Systems and Informatics AISI 2016:Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, 2016:566-575. [28] ALOM M Z, TAHA T M, YAKOPCIC C, et al. The history began from AlexNet:A comprehensive survey on deep learning approaches[J]. 2018:arXiv:1803.01164 [29] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014:arXiv:1409.1556. [30] BALLESTER P, ARAUJO R M. On the performance of GoogLeNet and AlexNet applied to sketches[C]. Phoenix:AAAI'16 Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016:1124-1128. [31] QIN F, YANG B, CHENG Z K. Research on measure criteria in evaluating classification performance[J]. Computer Technology and Development, 2006, 16(10):85-88.秦锋, 杨波, 程泽凯. 分类器性能评价标准研究[J]. 计算机技术与发展, 2006, 16(10):85-88. [32] WANG H Z, ZHAO D, YANG L Q, et al. An approach for training data enrichment and batch labeling in AI+MRI aided diagnosis[J]. Chinese J Magn Reson, 2018, 35(4):50-59. 汪红志, 赵地, 杨丽琴, 等. 基于AI+MRI的影像诊断的样本增广与批量标注方法[J]. 波谱学杂志, 2018, 35(4):50-59. |