Chinese Journal of Magnetic Resonance ›› 2018, Vol. 35 ›› Issue (3): 269-279.doi: 10.11938/cjmr20182646
Previous Articles Next Articles
WANG Wei-yu1,2, HU Han1,2, XU Jun1, DENG Feng1
Received:
2018-05-11
Online:
2018-09-05
Published:
2018-08-28
CLC Number:
WANG Wei-yu, HU Han, XU Jun, DENG Feng. Hydrogenation Reaction on Pd-Cu Bimetallic Catalysts: A Parahydrogen-Induced Polarization Study[J]. Chinese Journal of Magnetic Resonance, 2018, 35(3): 269-279.
[1] BOWERS C R, WEITEKAMP D P. Transformation of symmetrization order to nuclear-spin magnetization by chemical-reaction and nuclear-magnetic-resonance[J]. Phys Rev Lett, 1986, 57(21):2645-2648. [2] BOWERS C R, WEITEKAMP D P. Para-hydrogen and synthesis allow dramatically enhanced nuclear alignment[J]. J Am Chem Soc, 1987, 109(18):5541-5542. [3] EISENSCHMID T C, KIRSS R U, DEUTSCH P P, et al. Para hydrogen induced polarization in hydrogenation reactions[J]. J Am Chem Soc, 1987, 109(26):8089-8091. [4] REINERI F, AIME S, GOBETTO R, et al. Role of the reaction intermediates in determining PHIP (parahydrogen induced polarization) effect in the hydrogenation of acetylene dicarboxylic acid with the complex[Rh (dppb)](+) (dppb:1,4-bis(diphenylphosphino) butane)[J]. J Chem Phys, 2014, 140(9):094307. [5] BARSKIY D A, SHCHEPIN R V, COFFEY A M, et al. Over 20% 15N Hyperpolarization in under one minute for metronidazole, an antibiotic and hypoxia probe[J]. J Am Chem Soc, 2016, 138(26):8080-8083. [6] GLOGGLER S, GRUNFELD A M, ERTAS Y N, et al. A nanoparticle catalyst for heterogeneous phase para-hydrogen-induced polarization in water[J]. Angew Chem Int Edit, 2015, 54(8):2452-2456. [7] WANG W Y, XU J, ZHAO Y X, et al. Facet dependent pairwise addition of hydrogen over Pd nanocrystal catalysts revealed via NMR using para-hydrogen-induced polarization[J]. Phys Chem Chem Phys, 2017, 19(14):9349-9353. [8] KOVTUNOV K V, BECK I E, BUKHTIYAROV V I, et al. Observation of parahydrogen-induced polarization in heterogeneous hydrogenation on supported metal catalysts[J]. Angew Chem Int Edit, 2008, 47(8):1492-1495. [9] ZHOU R H, ZHAO E W, CHENG W, et al. Parahydrogen-induced polarization by pairwise replacement catalysis on Pt and Ir nanoparticles[J]. J Am Chem Soc, 2015, 137(5):1938-1946. [10] BARSKIY D A, COFFEY A M, NIKOLAOU P, et al. NMR hyperpolarization techniques of gases[J]. Chem Eur J, 2017, 23(4):725-751. [11] ZHIVONITKO V V, KOVTUNOV K V, BECK I E, et al. Role of different active sites in heterogeneous alkene hydrogenation on platinum catalysts revealed by means of parahydrogen-induced polarization[J]. J Phys Chem C, 2011, 115(27):13386-13391. [12] ZHOU R H, CHENG W, NEAL L M, et al. Parahydrogen enhanced NMR reveals correlations in selective hydrogenation of triple bonds over supported Pt catalyst[J]. Phys Chem Chem Phys, 2015, 17(39):26121-26129. [13] SALNIKOV O G, BURUEVA D B, GERASIMOV E Y, et al. The effect of oxidative and reductive treatments of titania-supported metal catalysts on the pairwise hydrogen addition to unsaturated hydrocarbons[J]. Catal Today, 2017, 283:82-88. [14] ZHAO E W, ZHENG H B, LUDDEN K, et al. Strong metal-support interactions enhance the pairwise selectivity of parahydrogen addition over Ir/TiO2[J]. ACS Catal, 2016, 6(2):974-978. [15] KOVTUNOV K V, TRUONG M L, BARSKIY D A, et al. Propane-d(6) heterogeneously hyperpolarized by parahydrogen[J]. J Phys Chem C, 2014, 118(48):28234-28243. [16] KOPTYUG I V, KOVTUNOV K V, BURT S R, et al. Para-hydrogen-induced polarization in heterogeneous hydrogenation reactions[J]. J Am Chem Soc, 2007, 129(17):5580-5586. [17] WANG W Y, HU H, XU J, et al. Tuning Pd-Au bimetallic catalysts for heterogeneous parahydrogen-induced polarization[J]. J Phys Chem C, 2018, 122(2):1248-1257. [18] KOVTUNOV K V, BECK I E, ZHIVONITKO V V, et al. Heterogeneous addition of H-2 to double and triple bonds over supported Pd catalysts:a parahydrogen-induced polarization technique study[J]. Phys Chem Chem Phys, 2012, 14(31):11008-11014. [19] BURUEVA D B, SALNIKOV O G, KOVTUNOV K V, et al. Hydrogenation of unsaturated six-membered cyclic hydrocarbons studied by the parahydrogen-induced polarization technique[J]. J Phys Chem C, 2016, 120(25):13541-13548. [20] SALNIKOV O G, KOVTUNOV K V, BARSKIY D A, et al. Evaluation of the mechanism of heterogeneous hydrogenation of alpha, beta-unsaturated carbonyl compounds via pairwise hydrogen addition[J]. ACS Catal, 2014, 4(6):2022-2028. [21] HORIUTI I, POLANYI M. Exchange reactions of hydrogen on metallic catalysts[J]. Trans Faraday Soc, 1934, 30:1164-1172. [22] ZHIVONITKO V V, SKOVPIN I V, CRESPO-QUESADA M, et al. Acetylene oligomerization over Pd nanoparticles with controlled shape:a parahydrogen-induced polarization study[J]. J Phys Chem C, 2016, 120(9):4945-4953. [23] ZHAO E W, MALIGAL-GANESH R, XIAO C, et al. Silica-encapsulated Pt-Sn intermetallic nanoparticles:a robust catalytic platform for parahydrogen-induced polarization of gases and liquids[J]. Angew Chem Int Edit, 2017, 129(14):3983-3987. [24] BURUEVA D B, KOVTUNOV K V, BUKHTIYAROV A V, et al. Selective single-site Pd-In hydrogenation catalyst for production of enhanced magnetic resonance signals using parahydrogen[J]. Chem Eur J, 2018, 24(11):2547-2553. [25] ZHANG H, JIN M S, XIA Y N. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd[J]. Chem Soc Rev, 2012, 41(24):8035-8049. [26] SHAN S Y, PETKOV V, PRASAI B, et al. Catalytic activity of bimetallic catalysts highly sensitive to the atomic composition and phase structure at the nanoscale[J]. Nanoscale, 2015, 7(45):18936-18948. [27] WU J F, SHAN S Y, LUO J, et al. PdCu nanoalloy electrocatalysts in oxygen reduction reaction:role of composition and phase state in catalytic synergy[J]. Acs Appl Mater Inter, 2015, 7(46):25906-25913. [28] LOUKRAKPAM R, SHAN S Y, PETKOV V, et al. Atomic ordering enhanced electrocatalytic activity of nanoalloys for oxygen reduction reaction[J]. J Phys Chem C, 2013, 117(40):20715-20721. [29] CASTEGNARO M V, GORGESKI A, BALKE B, et al. Charge transfer effects on the chemical reactivity of PdxCu1-x nanoalloys[J]. Nanoscale, 2016, 8(1):641-647. [30] SHI W W, CHEN X Q, XU S Y, et al. Highly efficient PdCu3 nanocatalysts for Suzuki-Miyaura reaction[J]. Nano Res, 2016, 9(10):2912-2920. [31] LIU J, ZHU Y N, LIU C, et al. Excellent selectivity with high conversion in the semihydrogenation of alkynes using palladium-based bimetallic catalysts[J]. Chemcatchem, 2017, 9(21):4053-4057. [32] MARKOV P V, BRAGINA G O, BAEVA G N, et al. Pd-Cu catalysts from acetate complexes in liquid-phase diphenylacetylene hydrogenation[J]. Kinet Catal, 2015, 56(5):591-597. [33] LIU Y A, HE Y F, ZHOU D R, et al. Catalytic performance of Pd-promoted Cu hydrotalcite-derived catalysts in partial hydrogenation of acetylene:effect of Pd-Cu alloy formation[J]. Catal Sci Technol, 2016, 6(9):3027-3037. [34] RAVANCHI M T, SAHEBDELFAR S, KOMEILI S. Acetylene selective hydrogenation:a technical review on catalytic aspects[J]. Rev Chem Eng, 2018, 34(2):215-237. [35] BRIDIER B, LOPEZ N, PEREZ-RAMIREZ J. Partial hydrogenation of propyne over copper-based catalysts and comparison with nickel-based analogues[J]. J Catal, 2010, 269(1):80-92. [36] WEHRLI J T, THOMAS D J, WAINWRIGHT M S, et al. Selective hydrogenation of propyne over an ion-exchanged copper on silica catalyst[J]. Appl Catal, 1990, 66(1):199-208. [37] BOND G C. Catalysis by metals[M]. Academic Press, 1962. [38] JOICE B J, ROONEY J J, WELLS P B, et al. Nature and reactivity of intermediates in hydrogenation of buta-13-diene catalyzed by cobalt and palladium-gold alloys[J]. Discuss Faraday Soc, 1966, (41):223-236. [39] RUSHFORD H G, WHAN D A. Catalytic hydrogenation of but-2-yne on palladium-gold alloys[J]. Trans Faraday Soc, 1971, 67(588):3577-3584. [40] BOND G C, RAWLE A F. Catalytic hydrogenation in the liquid phase. Part 1. Hydrogenation of isoprene catalysed by palladium, palladium-gold and palladium-silver catalysts[J]. J Mol Cata A-Chem, 1996, 109(3):261-271. [41] PEI G X, LIU X Y, YANG X F, et al. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions[J]. ACS Catal, 2017, 7(2):1491-1500. [42] MCCUE A J, GIBSON A, ANDERSON J A. Palladium assisted copper/alumina catalysts for the selective hydrogenation of propyne, propadiene and propene mixed feeds[J]. Chem Eng J, 2016, 285:384-391. [43] PRAVICA M G, WEITEKAMP D P. Net NMR alignment by adiabatic transport of parahydrogen addition products to high magnetic field[J]. Chem Phys Lett, 1988, 145(4):255-258. [44] ZHANG J Y, FENG A N, BAI J, et al. One-pot synthesis of hierarchical flower-like Pd-Cu alloy support on graphene towards ethanol oxidation[J]. Nanoscale Res Lett, 2017, 12(1):521. [45] BOUCHER M B, ZUGIC B, CLADARAS G, et al. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions[J]. Phys Chem Chem Phys, 2013, 15(29):12187-12196. [46] MCCUE A J, ANDERSON J A. CO induced surface segregation as a means of improving surface composition and enhancing performance of CuPd bimetallic catalysts[J]. J Catal, 2015, 329:538-546. [47] MCCUE A J, MCRITCHIE C J, SHEPHERD A M, et al. Cu/Al2O3 catalysts modified with Pd for selective acetylene hydrogenation[J]. J Catal, 2014, 319:127-135. [48] MCCUE A J, SHEPHERD A M, ANDERSON J A. Optimisation of preparation method for Pd doped Cu/Al2O3 catalysts for selective acetylene hydrogenation[J]. Catal Sci Technol, 2015, 5(5):2880-2890. [49] TIERNEY H L, BABER A E, KITCHIN J R, et al. Hydrogen dissociation and spillover on individual isolated palladium atoms[J]. Phys Rev Lett, 2009, 103(24):246102. [50] PEI G X, LIU X Y, WANG A Q, et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene[J]. ACS Catal, 2015, 5(6):3717-3725. [51] MCCUE A J, BAKER R T, ANDERSON J A. Acetylene hydrogenation over structured Au-Pd catalysts[J]. Faraday Discuss, 2016, 188:499-523. [52] PEI G X, LIU X Y, WANG A Q, et al. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene[J]. New J Chem, 2014, 38(5):2043-2051. [53] TIRUVALAM R C, PRITCHARD J C, DIMITRATOS N, et al. Aberration corrected analytical electron microscopy studies of sol-immobilized Au plus Pd, Au{Pd} and Pd{Au} catalysts used for benzyl alcohol oxidation and hydrogen peroxide production[J]. Faraday Discuss, 2011, 152:63-86. [54] GAO F, GOODMAN D W. Pd-Au bimetallic catalysts:understanding alloy effects from planar models and (supported) nanoparticles[J]. Chem Soc Rev, 2012, 41(24):8009-8020. |
[1] | HU Kun, SUN Han-dong, PUNO Pema-tenzin. Application of Quantum Chemical Calculation of Nuclear Magnetic Resonance Parameters in the Structure Elucidation of Natural Products [J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 359-376. |
[2] | YIN Tian-peng, WANG Ya-rong, WANG Min, SHI Wen-zhi, ZHANG Zheng-qian, HE Sha-sha. Complete Assignments of NMR Spectral Data of Three C19-Diterpenoid Alkaloids [J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 331-340. |
[3] | YANG Yun-han, DU Yao, YING Fei-xiang, YANG Jun-li, XIA Da-zhen, XIA Fu-ting, YANG Li-juan. Inclusion Behavior of Naringenin/β-Cyclodextrin Supramolecular Complex [J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 319-330. |
[4] | WANG Ya-lan, WANG Xiao-jing, WANG Zhi-wei. Spectral Analyses and Structural Elucidation of Azilsartan [J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 350-358. |
[5] | CAO Yuan, WU Yong-ping, CHEN Dong-jun. A Spectroscopic Study on Tautomerism of Selaginellins from Selaginella [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 155-163. |
[6] | KOU Xin-hui, LIU Yi-xiang, LIU Xing-hong, LI Cong-gang, LIU Mai-li, JIANG Ling. Visualizing the Pre-Active Conformation of Response Regulator PhoBNF20D in Its apo State [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 164-171. |
[7] | CHEN Xiao-ying, YU Gang-jin, MAO Shi-zhen, LIU Mai-li, DU You-ru. Mixing-Induced Decreases in Critical Micelle Concentration in Aqueous Solution of Surfactants:Probing into the Mechanisms with 1H NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 219-224. |
[8] | CHI Xiu-juan, QIAO Xiao-ya, LIU Ying, LIU Hui-li, CHEN Lei, WANG Ji-hui, AI Xuan-jun. Purification of the AtGrp7 RRM Domain from Arabidopsis thaliana and Its Preliminary Structure and Binding Analysis [J]. Chinese Journal of Magnetic Resonance, 2019, 36(1): 1-14. |
[9] | YIN Tian-peng, WANG Ze, CHEN Yang, SHAO Ya-ting, DENG Liang, LI Wei. An NMR Analysis of 10-Indol Cytochalasin Chaetoglobosin F [J]. Chinese Journal of Magnetic Resonance, 2019, 36(1): 74-82. |
[10] | YIN Tian-peng, LUO Zhi-hui, CAI Le, DING Zhong-tao. Research Progress and NMR Spectral Features of Natural C19-Diterpenoid Alkaloids [J]. Chinese Journal of Magnetic Resonance, 2019, 36(1): 113-126. |
[11] | RAN Meng-lin, QIN Ling-yun, TANG Chun, DONG Xu. Regulation of Inter-Protein Interactions Between Ubiquitin and Ubiquitin-Associated Domains in Rad23A/Ubiquilin-1 by Phosphorylation [J]. Chinese Journal of Magnetic Resonance, 2019, 36(1): 15-22. |
[12] | LI Ying-jun, YANG Kai-dong, JIN Kun, LIU Ji-hong, WANG Si-yuan, ZHANG Nan. NMR Study of A Novel Carbazole-Isatin Based Bis-Thiocarbohydrozone Derivative [J]. Chinese Journal of Magnetic Resonance, 2019, 36(1): 83-92. |
[13] | ZHU Yun-feng, HE Wei, HE Chuan-hong, WANG Yi, QI Tian-hao, CHEN Bai-bing, XU Zheng. A Nuclear Magnetic Resonance Radiofrequency Pulse Transmitter Based on Digital Modulation Technology [J]. Chinese Journal of Magnetic Resonance, 2018, 35(3): 318-327. |
[14] | GAO Dong-li, SUN Peng, WANG Qian-wen, LIU Mai-li, ZHANG Xu. Interactions Between Albumin and Fatty Acids Studied by NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2018, 35(3): 338-344. |
[15] | LI Chun-fa, LIU Guang, WANG Qin, LIU Zheng. Analyzing Pentaerythritol Stearate Homologs with NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2018, 35(3): 363-373. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||