Chinese Journal of Magnetic Resonance ›› 2019, Vol. 36 ›› Issue (2): 238-251.doi: 10.11938/cjmr20182618
• Review Articles • Previous Articles
XU Xiao-jun1,2, WANG Shen-lin1,2,3
Received:
2018-03-12
Published:
2018-05-03
Supported by:
CLC Number:
XU Xiao-jun, WANG Shen-lin. Probing Membrane Protein Interactions by 19F Solid-State NMR[J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 238-251.
[1] ANDERSEN O S, KOEPPE R E, Ⅱ. Bilayer thickness and membrane protein function:An energetic perspective[J]. Annu Rev Biophys Biomol Struct, 2007, 36:107-130. [2] PATCHING S G. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery[J]. Biochim Biophys Acta, 2014, 1838(1Pt A):43-55. [3] PHILLIPS R, URSELL T, WIGGINS P, et al. Emerging roles for lipids in shaping membrane-protein function[J]. Nature, 2009, 459(7245):379-385. [4] BAKER L A, BALDUS M. Characterization of membrane protein function by solid-state NMR spectroscopy[J]. Curr Opin Struc Biol, 2014, 27:48-55. [5] BAKER L A, FOLKERS G E, SINNIGE T, et al. Magic-angle-spinning solid-state nmr of membrane proteins[M]//SHUKLA A K. Membrane proteins-engineering, purification and crystallization. 2015, 557:307-328. [6] HANSEN S K, BERTELSEN K, PAASKE B, et al. Solid-state NMR methods for oriented membrane proteins[J]. Prog Nucl Mag Res Sp, 2015(88/89):48-85. [7] NAITO A, KAWAMURA I, JAVKHLANTUGS N. Recent solid-state NMR studies of membrane-bound peptides and proteins[J]. Annu Rep NMR Spectro, 2015, 86:333-411. [8] WARD M E, BROWN L S, LADIZHANSKY V. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics:Application to anabaena sensory rhodopsin[J]. J Magn Reson, 2015, 253:119-128. [9] GERIG J T. Fluorine NMR[M/OL]. 2001. http://www.biophysics.org/img/jtg2001-2.pdf. [10] AASHISH M, TAE HUM KIM, MATTHIEU M, et al. Structural insights into the dynamic process of beta2-adrenergic receptor signaling[J]. Cell, 2015, 161(5):1101-1111. [11] LIU J J, HORST R, KATRITCH V, et al. Biased signaling pathways in beta(2)-adrenergic receptor characterized by 19F NMR[J]. Science, 2012, 335(6072):1106-1110. [12] LEE M, YAO H, KWON B, et al. Conformation and trimer association of the transmembrane domain of the parainfluenza virus fusion protein in lipid bilayers from solid-state nmr:insights into the sequence determinants of trimer structure and fusion activity[J]. J Mol Biol, 2018, 15:695-709. [13] WILLIAMS J K, SHCHERBAKOV A A, WANG J, et al. Protonation equilibria and pore-opening structure of the dual-histidine influenza B virus M2 transmembrane proton channel from solid-state NMR[J]. J Biol Chem, 2017, 292(43):17876-17884. [14] SALNIKOV E S, RAYA J, DE ZOTTI M, et al. Alamethicin supramolecular organization in lipid membranes from 19F solid-state NMR[J]. Biophys J, 2016, 111(11):2450-2459. [15] WADHWANI P, STRANDBERG E, HEIDENREICH N, et al. Self-assembly of flexible beta-strands into immobile amyloid-like beta-sheets in membranes as revealed by solid-state 19F NMR[J]. J Am Chem Soc, 2012, 134(15):6512-6515. [16] GRAGE S L, SANI M A, CHENEVAL O, et al. Orientation and location of the cyclotide kalata b1 in lipid bilayers revealed by solid-state NMR[J]. Biophys J, 2017, 112(4):630-642. [17] MISIEWICZ J, AFONIN S, ULRICH A S. Control and role of pH in peptide-lipid interactions in oriented membrane samples[J]. Biochim Biophys Acta, 2015, 1848(3):833-841. [18] MANZO G, SCORCIAPINO M A, WADHWANI P, et al. Enhanced amphiphilic profile of a short beta-stranded peptide improves its antimicrobial activity[J]. Plos One, 2015, 10(1):e0116379. [19] BATTISTE J, NEWMARK R A. Applications of 19F multidimensional NMR[J]. Prog Nucl Mag Res Sp, 2006, 48(1):1-23. [20] KITEVSKI-LEBLANC J L, PROSSER R S. Current applications of 19F NMR to studies of protein structure and dynamics[J]. Prog Nucl Mag Res Sp, 2012, 62:1-33. [21] YU J X, HALLAC R R, CHIGURU S, et al. New frontiers and developing applications in 19F NMR[J]. Prog Nucl Mag Res Sp, 2013, 70:25-49. [22] DAI C Y, LIU M L, LI C G. Salt content-dependent conformational changes of alpha-synuclein studied by 19F NMR[J]. Chinese J Magn Reson, 2015, 32(1):33-40. 戴晨晔, 刘买利, 李从刚. 低盐和高盐环境下α-Synuclein构像的19F NMR[J]. 波谱学杂志, 2015, 32(1):33-40. [23] LI L S, LI Y, LAN Y J, et al. A brief review on 19F NMR[J]. Chinese J Magn Reson, 2007, 24(3):353-364. 李临生, 李燕, 兰云军, 等. 19F NMR的特点[J]. 波谱学杂志, 2007, 24(3):353-364. [24] LI C G, WANG G F, WANG Y Q, et al. Protein 19F NMR in Escherichia coli[J]. J Am Chem Soc, 2010, 132(1):321-327. [25] YE Y S, LIU X L, ZHANG Z T, et al. 19F NMR spectroscopy as a probe of cytoplasmic viscosity and weak protein interactions in living cells[J]. Chemistry, 2013, 19(38):12705-12710. [26] MERRIFIELD R B. Solid phase peptide synthesis.1. Synthesis of a tetrapeptide[J]. J Am Chem Soc, 1963, 85(14):2149-2154. [27] LARDA S T, SIMONETTI K, AL-ABDUL-WAHID M S, et al. Dynamic equilibria between monomeric and oligomeric misfolded states of the mammalian prion protein measured by 19F NMR[J]. J Am Chem Soc, 2013, 135(28):10533-10541. [28] LUCK L A, FALKE J J. 19F NMR-studies of the D-galactose chemosensory receptor.1. Sugar binding yields a global structural change[J]. Biochemistry, 1991, 30(17):4248-4256. [29] LI H, FRIEDEN C. NMR studies of 4-19F-phenylalanine-labeled intestinal fatty acid binding protein:Evidence for conformational heterogeneity in the native state[J]. Biochemistry, 2005, 44(7):2369-2377. [30] LI H L, FRIEDEN C. Observation of sequential steps in the folding of intestinal fatty acid binding protein using a slow folding mutant and 19F NMR[J]. P Natl Acad Sci USA, 2007, 104(29):11993-11998. [31] CHADEGANI F, LOVELL S, MULLANGI V, et al. 19F nuclear magnetic resonance and crystallographic studies of 5-fluorotryptophan-labeled anthrax protective antigen and effects of the receptor on stability[J]. Biochemistry, 2014, 53(4):690-701. [32] EVANICS F, BEZSONOVA I, MARSH J, et al. Tryptophan solvent exposure in folded and unfolded states of an SH3 domain by 19F and H-1 NMR[J]. Biochemistry, 2006, 45(47):14120-14128. [33] ANDERLUH G, RAZPOTNIK A, PODLESEK Z, et al. Interaction of the eukaryotic pore-forming cytolysin equinatoxin Ⅱ with model membranes:19F NMR studies[J]. J Mol Biol, 2005, 347(1):27-39. [34] LI H, FRIEDEN C. Comparison of C40/82A and P27A C40/82A barstar mutants using 19F NMR[J]. Biochem, 2007, 46(14):4337-4347. [35] BANN J G, PINKNER J, HULTGREN S J, et al. Real-time and equilibrium 19F NMR studies reveal the role of domain-domain interactions in the folding of the chaperone PapD[J]. P Natl Acad Sci USA, 2002, 99(2):709-714. [36] LI C G, LUTZ E A, SLADE K M, et al. 19F NMR studies of alpha-synuclein conformation and fibrillation[J]. Biochemistry, 2009, 48(36):8578-8584. [37] POMERANTZ W C, WANG N K, LIPINSKI A K, et al. Profiling the dynamic interfaces of fluorinated transcription complexes for ligand discovery and characterization[J]. ACS Chem Biol, 2012, 7(8):1345-1350. [38] IRA J R, JOSHUA A B, PAULA M D. A residual structure in unfolded intestinal fatty acid binding protein consists of amino acids that are neighbors in the native state[J]. Biochem, 2006, 45(8):2608-2617. [39] SCHLESINGER A P, WANG Y Q, TADEO X, et al. Macromolecular crowding fails to fold a globular protein in cells[J]. J Am Chem Soc, 2011, 133(21):8082-8085. [40] ZIGONEANU I G, PIELAK G J. Interaction of alpha-synuclein and a cell penetrating fusion peptide with higher eukaryotic cell membranes assessed by 19F NMR[J]. Mol Pharm, 2012, 9(4):1024-1029. [41] VILLARREAL F, TAN C. Cell-free systems in the new age of synthetic biology[J]. Front Chem Sci Eng, 2017, 11(1):58-65. [42] CARLSON E D, GAN R, HODGMAN C E, et al. Cell-free protein synthesis:Applications come of age[J]. Biotechnol Adv, 2012, 30(5):1185-1194. [43] HARADA R, FURUMOTO S, YOSHIKAWA T, et al. Synthesis and characterization of 18F-interleukin-8 using a cell-free translation system and 4-F-18-fluoro-l-proline[J]. J Nucl Med, 2016, 57(4):634-639. [44] NEERATHILINGAM M, GREENE L, COLEBROOKE S, et al. Quantitation of protein expression in a cell-free system:efficient detection of yields and 19F NMR to identify folded protein[J]. J Biomol NMR, 2005, 31(1):11-19. [45] KLEIN-SEETHARAMAN J, GETMANOVA E V, LOEWEN M C, et al. NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin:Applicability of solution 19F NMR[J]. P Natl Acad Sci USA, 1999, 96(24):13744-13749. [46] LUCHETTE P A, PROSSER R S, SANDERS C R. Oxygen as a paramagnetic probe of membrane protein structure by cysteine mutagenesis and 19F NMR spectroscopy[J]. J Am Chem Soc, 2002, 124(8):1778-1781. [47] KIM TH, CHUNG K Y, MANGLIK A, et al. The role of ligands on the equilibria between functional states of a g protein-coupled receptor[J]. J Am Chem Soc, 2013, 135(25):9465-9474. [48] MEIBOOM S, GILL D. Modified spin-echo method for measuring nuclear relaxation times[J]. Rev Sci Instr, 1958, 29(8):688-691. [49] GRAGE S L, ULRICH A S. Structural parameters from 19F homonuclear dipolar couplings, obtained by multipulse solid-state NMR on static and oriented systems[J]. J Magn Reson, 1999, 138(1):98-106. [50] SALGADO J, GRAGE S L, KONDEJEWSKI L H, et al. Membrane-bound structure and alignment of the antimicrobial beta-sheet peptide gramicidin S derived from angular and distance constraints by solid state 19F NMR[J]. J Biomol NMR, 2001, 21(3):191-208. [51] GRAGE S L, SULEYMANOVA A V, AFONIN S, et al. Solid state NMR analysis of the dipolar couplings within and between distant CF3-groups in a membrane-bound peptide[J]. J Magn Reson, 2006, 183(1):77-86. [52] GRAGE S L, XU X J, SCHMITT M, et al. 19F-labeling of peptides revealing long-range nmr distances in fluid membranes[J]. J Phys Chem Lett, 2014, 5(24):4256-4259. [53] NAITO A, NISHIMURA K, KIMURA S, et al. Determination of the three-dimensional structure of a new crystalline form of N-acetyl-Pro-Gly-Phe as revealed by 13C REDOR, X-ray diffraction, and molecular dynamics calculation[J]. J Phys Chem, 1996, 100(36):14995-5004. [54] MERRITT M E, SIGURDSSON S T, DROBNY G P. Long-range distance measurements to the phosphodiester backbone of solid nucleic acids using 31P-19F REDOR NMR[J]. J Am Chem Soc, 1999, 121(25):6070-6071. [55] GRAGE S L, WATTS J A, WATTS A. 2H{19F} REDOR for distance measurements in biological solids using a double resonance spectrometer[J]. J Magn Reson, 2004, 166(1):1-10. [56] ANTONIOLI G, HODGKINSON P. Resolution of 13C-19F interactions in the 13C NMR of spinning solids and liquid crystals[J]. J Magn Reson, 2004, 168(1):124-131. [57] KIM S J, CEGELSKI L, PREOBRAZHENSKAYA M, et al. Structures of Staphylococcus aureus cell-wall complexes with vancomycin, eremomycin, and chloroeremomycin derivatives by 13C{19F} and 15N{19F} rotational-echo double resonance[J]. Biochemistry, 2006, 45(16):5235-5250. [58] LUO W B, HONG M. Determination of the oligomeric number and intermolecular distances of membrane protein assemblies by anisotropic (1)H-driven spin diffusion NMR spectroscopy[J]. J Am Chem Soc, 2006, 128(22):7242-7251. [59] MATEI E, GRONENBORN A M. 19F Paramagnetic relaxation enhancement:A valuable tool for distance measurements in proteins[J]. Angew Chem Int Ed, 2016, 55(1):150-54. [60] HUANG H W. Action of antimicrobial peptides:Two-state model[J]. Biochemistry, 2000, 39(29):8347-8352. [61] SHAI Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides[J]. Biochim Biophys Acta, 1999, 1462(1/2):55-70. [62] VAN'T HOF W, VEERMAN ECI, HELMERHORST E J, et al. Antimicrobial peptides:Properties and applicability[J]. Biol Chem, 2001, 382(4):597-619. [63] EPAND R M, VOGEL H J. Diversity of antimicrobial peptides and their mechanisms of action[J]. Biochim Biophys Acta, 1999, 1462(1/2):11-28. [64] BROGDEN K A. Antimicrobial peptides:Pore formers or metabolic inhibitors in bacteria?[J] Nat Rev Microbiol, 2005, 3(3):238-250. [65] OREN Z, SHAI Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides[J]. Biopolymers, 1998, 47(6):451-463. [66] BECHINGER B, GORR S U. Antimicrobial peptides:mechanisms of action and resistance[J]. J Dent Res, 2017, 96(3):254-260. [67] GLASER R W, SACHSE C, DURR U H N, et al. Orientation of the antimicrobial peptide PGLa in lipid membranes determined from 19F NMR dipolar couplings of 4-CF3-phenylglycine labels[J]. J Magn Reson, 2004, 168(1):153-163. [68] BECHINGER B, ZASLOFF M, OPELLA S J. Structure and dynamics of the antibiotic peptide PGLa in membranes by solution and solid-state nuclear magnetic resonance spectroscopy[J]. Biophy J, 1998, 74(2):981-987. [69] AFONIN S, GRAGE SL, IERONIMO M, et al. Temperature-dependent transmembrane insertion of the amphiphilic peptide pgla in lipid bilayers observed by solid state 19F NMR spectroscopy[J]. J Am Chem Soc, 2008, 130(49):16512-16514. [70] TANG Y J, ZAITSEVA F, LAMB R A, et al. The gate of the influenza virus M-2 proton channel is formed by a single tryptophan residue[J]. J Biol Chem, 2002, 277(42):39880-39886. [71] SALOM D, HILL B R, LEAR J D, et al. pH-dependent tetramerization and amantadine binding of the transmembrane helix of M2 from the influenza A virus[J]. Biochemistry, 2000, 39(46):14160-14170. [72] SPITZER J, POOLMAN B. The role of biomacromolecular crowding, ionic strength, and physicochemical gradients in the complexities of life's emergence[J]. Microbiol Mol Biol R, 2009, 73(2):371-388. [73] MIKLOS A C, LI C, SHARAF N G, et al. Volume exclusion and soft interaction effects on protein stability under crowded conditions[J]. Biochemistry, 2010, 49(33):6984-6991. [74] KOCH K, AFONIN S, IERONIMO M, et al. Solid-state 19F NMR of peptides in native membranes[J]. Top Curr Chem, 2012, 306:89-118. [75] BERTRAND K, REVERDATTO S, BURZ D S, et al. Structure of proteins in eukaryotic compartments[J]. J Am Chem Soc, 2012, 134(30):12798-12806. [76] HAMATSU J, O'DONOVAN D, TANAKA T, et al. High-resolution heteronuclear multidimensional NMR of proteins in living insect cells using a baculovirus protein expression system[J]. J Am Chem Soc, 2013, 135(5):1688-1691. [77] BANCI L, BARBIERI L, BERTINI I, et al. Atomic-resolution monitoring of protein maturation in live human cells by NMR[J]. Nat Chem Biol, 2013, 9(5):297-299. [78] BANCI L, BARBIERI L, LUCHINAT E, et al. Visualization of redox-controlled protein fold in living cells[J]. Chem Biol, 2013, 20(6):747-752. [79] RAHMAN S, BYUN Y, HASSAN MI, et al. Towards understanding cellular structure biology:In-cell NMR[J]. BBA-Mol Basis Dis, 2017, 1865(5):547-557. [80] PIELAK G J, TIAN F. Membrane proteins, magic-angle spinning, and in-cell NMR[J]. P Natl Acad Sci USA, 2012, 109(13):4715-4716. [81] FREEDBERG DI, SELENKO P. Live Cell NMR[J]. Annu Rev Biophy, 2014, 43:171-192. [82] TOCHIO H. Watching protein structure at work in living cells using NMR spectroscopy[J]. Curr Opin Chem Biol, 2012, 16(5/6):609-613. [83] LI C G, WANG G F, WANG Y Q, et al. Protein 19F NMR in Escherichia coli[J]. J Am Chem Soc, 2010, 132(1):321. [84] BRINDLE K, WILLIAMS SP, BOULTON M. 19F NMR detection of a fluorine-labelled enzyme in vivo[J]. Febs Lett, 1989, 255(1):121-124. [85] TAKECHI-HARAYA Y, AKI K, TOHYAMA Y, et al. Glycosaminoglycan binding and non-endocytic membrane translocation of cell-permeable octaarginine monitored by real-time in-cell nmr spectroscopy[J]. Pharmaceuticals (Basel), 2017, 10(2):42. [86] LI D, ZHANG Y N, HE Y, et al. Protein-protein interaction analysis in crude bacterial lysates using combinational method of 19F site-specific incorporation and 19F NMR[J]. Protein Cell, 2017, 8(2):149-154. [87] YODER N C, KUMAR K. Fluorinated amino acids in protein design and engineering[J]. Chem Soc Rev, 2002, 31(6):335-341. [88] JACKEL C, KOKSCH B. Fluorine in peptide design and protein engineering[J]. Eur J Org Chem, 2010, 2010(21):4483-4503. [89] QIU X L, QING F L. Recent advances in the synthesis of fluorinated amino acids[J]. Eur J Org Chem, 2011, 2011(18):3261-3278. [90] SALWICZEK M, NYAKATURA EK, GERLING UIM, et al. Fluorinated amino acids:compatibility with native protein structures and effects on protein-protein interactions[J]. Chem Soc Rev, 2012, 41(6):2135-2171. [91] ODAR C, WINKLER M, WILTSCHI B. Fluoro amino acids:A rarity in nature, yet a prospect for protein engineering[J]. Biotechnol J, 2015, 10(3):427-446. [92] LIU Y X, ROSE J, HUANG S J, et al. A pH-gated conformational switch regulates the phosphatase activity of bifunctional HisKa-family histidine kinases[J]. Nat Commun, 2017, 8:2104. [93] KIRSCH P. Modern fluoroorganic chemistry:synthesis, reactivity, applications[M]. Wiley-VCH, 2006. [94] XIAO G Y, PARSONS J F, TESH K, et al. Conformational changes in the crystal structure of rat glutathione transferase M1-1 with global substitution of 3-fluorotyrosine for tyrosine[J]. J Mol Biol, 1998, 281(2):323-339. |
[1] | RAN Meng-lin, QIN Ling-yun, TANG Chun, DONG Xu. Regulation of Inter-Protein Interactions Between Ubiquitin and Ubiquitin-Associated Domains in Rad23A/Ubiquilin-1 by Phosphorylation [J]. Chinese Journal of Magnetic Resonance, 2019, 36(1): 15-22. |
[2] | GE Yu-wei, LIU Mai-li, GAN Zhe-hong, LI Cong-gang. Measurements of Proton Chemical Shift Anisotropy [J]. Chinese Journal of Magnetic Resonance, 2018, 35(2): 255-267. |
[3] | SUN Yi, CHEN Yan-ke, LI Jian-ping, ZHAO Yong-xiang, YANG Jun. Efficiency of Double Cross Polarization in Magic-Angle Spinning Solid-State NMR Studies on Membrane Proteins [J]. Chinese Journal of Magnetic Resonance, 2017, 34(3): 257-265. |
[4] | YANG Xian-peng, YU Hao-jie, WANG Li. Recent Progresses in ESR Studies on Ferrocenyl Compounds [J]. Chinese Journal of Magnetic Resonance, 2016, 33(3): 491-501. |
[5] | DAI Chen-ye, ZHANG Ze-ting, LIU Mai-li, LI Cong-gang. Application of NMR in the Studies of Structure and Interactions of α-Synuclein [J]. Chinese Journal of Magnetic Resonance, 2016, 33(1): 153-167. |
[6] | HU Yun-fei1,2,HE Peng3,WU Yu-jie1,3,JIN Chang-wen1,2,3,4*. Solution Structure of Bacillus subtilis Twin-Arginine Translocation TatAy Protein [J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 291-307. |
[7] | HONG Jing, LIU Hua, YU Shi-Hong, CHEN Tao-Tao, LIN Dong-Hai. Interaction between MRG15 and Methylated Histone H3K36 Studied by NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2012, 29(4): 598-604. |
[8] | BI Yuan-Chen, WANG Yu-Juan, WANG Jun-Feng. The Nanodics: A Novel Tool to Study Membrane Protein Structure and Function [J]. Chinese Journal of Magnetic Resonance, 2011, 28(2): 177-189. |
[9] | ZHANG Yi, LIU Yi, MENG Da-Li, LI Xian. Spectral Characteristics of Cyclic Diarylheptanoids [J]. Chinese Journal of Magnetic Resonance, 2010, 27(4): 669-677. |
[10] | GOU Qian; XIA Zhi-ning; TANG Shou-yuan. Intermolecular Interactions Studied by Microwave Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2009, 26(3): 413-423. |
[11] |
DENG Yi-bin;JI Dan;ZHOU Ping*.
Application of Magnetic Resonance Methods in the Structural and Functional Characterization of Silk Fibroin [J]. Chinese Journal of Magnetic Resonance, 2008, 25(4): 555-571. |
[12] | MA Jun-he1,2; GUO Chen1; TANG Ya-lin3; SONG Han1,2; LIU Hui-zhou1*. NMR Studies on PEO-PPO-PEO Block Copolymers: A Review [J]. Chinese Journal of Magnetic Resonance, 2008, 25(3): 421-434. |
[13] |
WANG Jun-mei;OUYANG Jie;SHANG Qian;DENG Zhi-wei . Application of the NMR Techniques in Studies on Organic Matters in Soil [J]. Chinese Journal of Magnetic Resonance, 2008, 25(2): 287-295. |
[14] | ZHOU Zhi-Ming, LIU Mai-Li, ZHANG Xu, XIE Chao-Hui. TWO EFFECTIVE METHODS FOR IMPROVING NMR SENSITIVITY AND RESOLUTION IN STUDIES OF BIOMACROMOLECULES: TROSY AND CRINEPT [J]. Chinese Journal of Magnetic Resonance, 2004, 21(3): 371-383. |
[15] | Mao Xian. APPLICATIONS OF NMR IN SOLUTION INORGANIC CHEMISTRY OF MAIN ELEMENTS [J]. Chinese Journal of Magnetic Resonance, 1995, 12(5): 551-555. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||