[1] HEINTZEN C, NATER M, APEL K, et al. AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana[J]. Proc Natl Acad Sci U S A, 1997, 94(16):8515-8520. [2] STREITNER C, HENNIN L, KORNELI C, et al. Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7[J]. BMC Plant Biol, 2010, 10:221. [3] MEYER K, KÖSTER T, NOLTE C, et al. Adaptation of iCLIP to plants determines the binding landscape of the clock regulated RNA-binding protein AtGRP7[J]. Genome Biol, 2017, 18(1):204. [4] STREITNER C, KÖSTER T, SIMPSON C G, et al. An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana[J]. Nucleic Acids Res, 2012, 40(22):11240-11255. [5] KÖSTER T, MEYER K, WEINHOLDT C, et al. Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis[J]. Nucleic Acids Res, 2014, 42(15):9925-9936. [6] STREITNER C, DANISMAN S, WEHRLE F, et al. The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana[J]. Plant J, 2008, 56(2):239-250. [7] KIM J S, JUNG H J, LEE H J, et al. Glycine-rich RNA-binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana[J]. Plant J, 2008, 55(3):455-466. [8] FU Z Q, GUO M, JEONG B R, et al. A type Ⅲ effector ADP-ribosylates RNA-binding proteins and quells plant immunity[J]. Nature, 2007, 447(7142):284-288. [9] JEONG B R, LIN Y, JOE A, et al. Structure function analysis of an ADP-ribosyltransferase type Ⅲ effector and its RNA-binding target in plant immunity[J]. J Biol Chem, 2011, 286(50):43272-43281. [10] NICAISE V, JOE A, JEONG B R, et al. Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7[J]. EMBO J, 2013, 32(5):701-712. [11] HACKMANN C, KORNELI C, KUTYNIOK M, et al. Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity[J]. Plant Cell Environ, 2014, 37(3):696-706. [12] KIM J S, PARK S J, KWAK K J, et al. Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli[J]. Nucleic Acids Res, 2007, 35(2):506-516. [13] WANG S C, LIANG D, SHI S G, et al. Isolation and characterization of a novel drought responsive gene encoding a glycine-rich RNA-binding protein in Malus prunifolia (Willd.) Borkh[J]. Plant Mol Biol Rep, 2011, 29(1):125-134. [14] CAO S Q, JIANG L, SONG S Y, et al. AtGrp7 is involved in the regulation of abscisic acid and stress responses in Arabidopsis[J]. Cell Mol Biol Lett, 2006, 11(4):526-535. [15] LEDER V, LUMMER M, TEGELER K, et al. Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy[J]. Biochem Biophys Res Commun, 2014, 453(1):69-74. [16] TRIPET B P, MASON K E, EILER B J, et al. Structural and biochemical analysis of the Hordeum vulgare L. HvGR-RBP1 protein, a glycine-rich rna-binding protein involved in the regulation of barley plant development and stress response[J]. Biochemistry, 2014, 53(50):7945-7960. [17] FRANCO-ECHEVARRIA, GONZÁLEZ-POLO N, ZORRILLA S, et al. The structure of transcription termination factor Nrd1 reveals an original mode for GUAA recognition[J]. Nucleic Acids Res, 2017, 45(17):10293-10305. [18] SCHüTTPELZ M, SCHöNING J C, DOOSE S, et al. Changes in conformational dynamics of mRNA upon AtGRP7 binding studied by Fluorescence correlation spectroscopy[J]. J Am Chem Soc, 2008, 130:9507-9513. [19] DELAGLIO F, GRZESIEK S, VUISTER G W, et al. NMRPipe:a multidimensional spectral processing system based on UNIX pipes[J]. J Biomol NMR, 1995, 6(3):277-293. [20] JOHNSON B A, BLEVINS R A. NMRView:a computer program for the visualization and analysis of NMR data[J]. J Biomol NMR, 1994, 4(5):603-614. [21] LANGE O F, ROSSI P, SGOURAKIS N G, et al. Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples[J]. Proc Natl Acad Sci U S A, 2012, 109(27):10873-10878. [22] SHEN Y, VEMON R, BAKER D, et al. De novo protein structure generation from incomplete chemical shift assignments[J]. J Biomol NMR, 2009, 43(2):63-78. [23] SHEN Y, LANGE O, DELAGLIO F, et al. Consistent blind protein structure generation from NMR chemical shift data[J]. Proc Natl Acad Sci U S A, 2008, 105(12):4685-4690. [24] FINN R D, COGGILL P, EBERHARDT R Y, et al. The Pfam protein families database:towards a more sustainable future[J]. Nucleic Acids Res, 2016, 44(D1):D279-D285. [25] KHAN F, DANIËLS M A, FOLKERS G E, et al. Structural basis of nucleic acid binding by Nicotiana tabacum glycine-rich RNA-binding protein:implications for its RNA chaperone function[J]. Nucleic Acids Res, 2014, 42(13):8705-8718. [26] HUTH J R, BEWLEY C A, JACKSON B M, et al. Design of an expression system for detecting folded protein domains and mapping macromolecular interactions by NMR[J]. Protein Sci, 1997, 6(11):2359-2364. [27] QIAO X Y, LIU Y, LUO L T, et al. Effects of naturally occurring charged mutations on the structure, stability, and binding of the Pin1 WW domain[J]. Biochem Biophys Res Commun, 2017, 487(2):470-476. [28] HOLM L, ROSENSTRÖM P. Dali server:conservation mapping in 3D[J]. Nucleic Acids Res, 2010, 38:W545-W549. [29] SCHÖNING J C, STREITNER C, PAGE D R, et al. Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation[J]. Plant J, 2007, 52(6):1119-1130. |