Chinese Journal of Magnetic Resonance ›› 2024, Vol. 41 ›› Issue (3): 286-303.doi: 10.11938/cjmr20243102
• Articles • Previous Articles Next Articles
WANG Xia1,2,*(), WANG Yong1,2, LAN Qing3
Received:
2024-03-22
Published:
2024-09-05
Online:
2024-05-08
Contact:
*Tel: 15284418883, E-mail: wangxiacsu@163.com.
CLC Number:
WANG Xia, WANG Yong, LAN Qing. Time-varying Analysis of Brain Networks Based on High-order Dynamic Functional Connections in Mild Cognitive Impairment[J]. Chinese Journal of Magnetic Resonance, 2024, 41(3): 286-303.
Table 4
Brain functional subnetworks
子网名称 | 英文简称 | 脑区数量 | 包含脑区名称 |
---|---|---|---|
默认网络 | DMN | 20 | 背外侧额上回、内侧额上回、眶内额上回、回直肌、前扣带和旁扣带脑回、后扣带回、角回、楔前叶、颞中回、颞极:颞中回 |
注意网络 | ATT | 16 | 眶部额上回、额中回、眶部额中回、岛盖部额下回、三角部额下回、眶部额下回、顶上回、顶下缘角回 |
皮质下网络 | SUB | 20 | 嗅皮质、内侧和旁扣带脑回、海马、海马旁回、杏仁核、尾状核、豆状壳核、豆状苍白球、丘脑、颞下回 |
视觉网络 | VIS | 14 | 距状裂周围皮层、楔叶、舌回、枕上回、枕中回、枕下回、梭状回 |
听觉网络 | AUD | 12 | 中央沟盖、脑岛、缘上回、颞横回、颞上回、颞极:颞上回 |
感觉运动网络 | SEN | 8 | 中央前回、补充运动区、中央后回、中央旁小叶 |
Table 6
t-test for various graph theory indicators of whole-brain higher-order network
指标 | 组别(均值±标准差) | p值 | |
---|---|---|---|
MCI | NC | ||
阻滞系数 | 1.24±0.35 | 0.95±0.30 | 0.001** |
平均转换时间 | 15.24±1.06 | 14.61±1.14 | 0.013* |
平均路径长度 | 1.86±0.17 | 2.13±0.40 | 0.008** |
最大度数 | 51.23±7.84 | 44.83±7.63 | 0.001** |
图密度 | 0.34±0.05 | 0.30±0.04 | <0.001** |
聚类系数 | 0.67±0.03 | 0.70±0.04 | 0.002** |
边连通性 | 18.88±4.05 | 14.82±4.25 | 0.001** |
小世界属性 | 2.49±0.22 | 2.59±0.18 | 0.027* |
Table 7
t-test for graph theory indicators of brain functional subnetworks
组别 | 指标 | ||||||||
---|---|---|---|---|---|---|---|---|---|
阻滞系数 | 平均转换时间 | 平均路径长度 | 最大度数 | 图密度 | 聚类系数 | 边连通性 | 小世界属性 | ||
DMN | MCI | 1.20±0.41 | 14.73±1.41 | 2.01±0.32 | 48.20±8.49 | 0.32±0.05 | 0.69±0.04 | 16.90±4.04 | 2.58±0.23 |
NC | 0.97±0.28 | 14.26±1.08 | 2.19±0.39 | 42.92±7.31 | 0.29±0.04 | 0.71±0.04 | 13.85±3.43 | 2.66±0.22 | |
p值 | 0.004** | 0.097 | 0.025* | 0.004** | 0.011* | 0.055 | 0.006** | 0.081 | |
ATT | MCI | 1.15±0.39 | 15.20±1.63 | 1.99±0.34 | 50.60±10.84 | 0.34±0.07 | 0.70±0.04 | 17.38±4.75 | 2.51±0.28 |
NC | 0.93±0.27 | 13.85±1.13 | 2.31±0.44 | 42.30±8.27 | 0.28±0.04 | 0.72±0.04 | 13.60±3.55 | 2.65±0.21 | |
p值 | 0.004** | 0.004** | 0.001** | <0.001** | 0.002** | 0.064 | <0.001** | 0.014* | |
SUB | MCI | 1.12±0.35 | 14.34±1.29 | 2.11±0.36 | 45.25±8.30 | 0.30±0.05 | 0.70±0.04 | 15.68±4.40 | 2.65±0.23 |
NC | 0.93±0.28 | 13.85±1.15 | 2.37±0.45 | 41.13±7.89 | 0.28±0.04 | 0.73±0.04 | 13.13±3.81 | 2.66±0.23 | |
p值 | 0.009** | 0.072 | 0.005** | 0.026* | 0.036* | 0.005** | 0.007** | 0.789 | |
VIS | MCI | 1.25±0.34 | 15.71±1.42 | 1.81±0.21 | 55.27±9.85 | 0.37±0.06 | 0.68±0.03 | 19.40±3.85 | 2.38±0.24 |
NC | 1.01±0.39 | 14.55±1.33 | 2.07±0.41 | 47.40±9.47 | 0.32±0.05 | 0.70±0.04 | 14.53±4.58 | 2.56±0.19 | |
p值 | 0.005** | <0.001** | 0.003** | <0.001** | <0.001** | 0.046* | <0.001** | 0.026* | |
AUD | MCI | 1.12±0.33 | 14.25±1.41 | 2.06±0.31 | 46.85±9.94 | 0.31±0.05 | 0.69±0.04 | 15.53±4.53 | 2.64±0.27 |
NC | 0.96±0.33 | 14.00±1.32 | 2.33±0.53 | 42.95±8.67 | 0.29±0.05 | 0.71±0.04 | 13.85±4.06 | 2.60±0.23 | |
p值 | 0.038* | 0.418 | 0.008** | 0.065 | 0.122 | 0.036* | 0.086 | 0.535 | |
SEN | MCI | 1.21±0.41 | 15.13±1.59 | 1.87±0.24 | 52.55±11.16 | 0.35±0.06 | 0.68±0.03 | 18.05±4.03 | 2.48±0.29 |
NC | 0.94±0.35 | 14.17±1.40 | 2.15±0.36 | 45.80±8.76 | 0.30±0.04 | 0.71±0.04 | 14.22±4.40 | 2.63±0.21 | |
p值 | 0.003** | 0.005** | <0.001** | 0.004** | <0.001** | 0.001** | <0.001** | 0.031* |
[1] | PETERSEN R C. Mild cognitive impairment: transition between aging and Alzheimer’s disease[J]. Neurologia, 2000, 15(3): 93-101. |
[2] | GAUTHIER S, REISBERG B, ZAUDIG M, et al. Mild cognitive impairment[J]. The Lancet, 2006, 367(9518): 1262-1270. |
[3] | MAHMOUDI A, TAKERKART S, REGRAGUI F, et al. Multivoxel pattern analysis for FMRI data: a review[J]. Comput Math Methods Med, 2012, 2012: 961257. |
[4] | BINNEWIJZEND M A A, SCHOONHEIM M M, SANZ-ARIGITA E, et al. Resting-state fMRI changes in Alzheimer’s disease and mild cognitive impairment[J]. Neurobiol Aging, 2012, 33(9): 2018-2028. |
[5] |
HUTCHISON R M, WOMELSDORF T, ALLEN E A, et al. Dynamic functional connectivity: Promise, issues, and interpretations[J]. NeuroImage, 2013, 80: 360-378.
doi: 10.1016/j.neuroimage.2013.05.079 pmid: 23707587 |
[6] |
KUDELA M, HAREZLAK J, LINDQUIST M A. Assessing uncertainty in dynamic functional connectivity[J]. NeuroImage, 2017, 149: 165-177.
doi: S1053-8119(17)30065-4 pmid: 28132931 |
[7] |
THOMPSON G J, MAGNUSON M E, MERRITT M D. et al. Short-time windows of correlation between large-scale functional brain networks predict vigilance intraindividually and interindividually[J]. Hum Brain Mapp, 2013, 34(12): 3280-3298.
doi: 10.1002/hbm.22140 pmid: 22736565 |
[8] | WEE C Y, YANG S, YAP P T, et al. Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification[J]. Brain Imaging Behav, 2016, 10(2): 342-356. |
[9] | DAMARAJU E, ALLEN A E, BELGER A, et al. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia[J]. NeuroImage: Clin, 2014, 5: 298-308. |
[10] |
LEONARDI N, RICHIARDI J, GSCHWIND M, et al. Principal components of functional connectivity: A new approach to study dynamic brain connectivity during rest[J]. NeuroImage, 2013, 83: 937-950.
doi: 10.1016/j.neuroimage.2013.07.019 pmid: 23872496 |
[11] |
SAVVA A D, MATSOPOULOS G K, MITSIS G D. A wavelet-based approach for estimating time-varying connectivity in resting-state fMRI[J]. Brain Connect, 2021, 12(3): 285-298.
doi: 10.1089/brain.2021.0015 pmid: 34155908 |
[12] |
ZHANG Y F, SIMON V L, CABALLERO M Á A, et al. Enhanced resting-state functional connectivity between core memory-task activation peaks is associated with memory impairment in MCI[J]. Neurobiol Aging, 2016, 45: 43-49.
doi: S0197-4580(16)30055-0 pmid: 27459924 |
[13] |
CHEN X B, ZHANG H, GAO Y, et al. High-order resting-state functional connectivity network for MCI classification[J]. Hum Brain Mapp, 2016, 37(9): 3282-3296.
doi: 10.1002/hbm.23240 pmid: 27144538 |
[14] | ZHANG Y, ZHANG H, CHEN X B, et al. Hybrid high-order functional connectivity networks using resting-state functional MRI for mild cognitive impairment diagnosis[J]. Sci Rep, 2017, 7(1): 6530. |
[15] | WANG Z, SHU H, LIU D, et al. Research progress of brain structure and functional network based on graph theory analysis in Alzheimer’s disease and Mild cognitive impairment[J]. Journal of Southeast University (Medical Science Edition), 2015, 34 (1): 135-138. |
王赞, 束昊, 刘端, 等. 阿尔茨海默病和轻度认知障碍中基于图论分析的脑结构和脑功能网络研究进展[J]. 东南大学学报(医学版), 2015, 34(1): 135-138. | |
[16] | SALVADOR R, SUCKLING J, COLEMAN M R, et al. Neurophysiological architecture of functional magnetic resonance images of human brain[J]. Cereb Cortex, 2005, 15: 1332-1342. |
[17] | STAM C J, JONES B F, NOLTE G, et al. Small-world networks and functional connectivity in Alzheimer’s disease[J]. Cereb Cortex, 2007, 17: 92-99. |
[18] | WANG X, WANG Y, WU H F, et al. Graph theory network construction method and classification of high-order dynamic functional connectivity in MCI patients[J]. Application Research of Computers, 2024, 41(4): 1094-1103. |
王霞, 王勇, 吴海锋, 等. MCI患者高阶动态功能连接的图论网络构建方法及分类[J]. 计算机应用研究, 2024, 41(4): 1094-1103. | |
[19] | HOJJATI S H, EBRAHIMZADEH A, KHAZAEE A. Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM[J]. J Neurosci Methods, 2017, 282: 69-80. |
[20] | YAN C G, WANG X D, ZUO X N, et al. DPABI: Data processing & analysis for (resting-state) brain imaging[J]. Neuroinf, 2016, 14(3): 339-351. |
[21] |
ANDERSON A, COHEN M S. Decreased small-world functional network connectivity and clustering across resting state networks in schizophrenia: An fMRI classification tutorial[J]. Front Hum Neurosci, 2013, 7: 520.
doi: 10.3389/fnhum.2013.00520 pmid: 24032010 |
[22] | WANG K, LIANG M, WANG L, et al. Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study[J]. Hum Brain Mapp, 2007, 28 (10): 967-78. |
[23] | LIU Z Y, ZHANG Y M, BAI L J, et al. Investigation of the effective connectivity of resting state networks in Alzheimer’s disease: a functional MRI study combining independent components analysis and multivariate Granger causality analysis[J]. NMR in Biomed, 2012, 25 (12): 1311-1320. |
[24] | FATEMEH M, MARYAM N, ZARE A S, et al. Effective connectivity evaluation of resting-state brain networks in Alzheimer’s disease, amnestic mild cognitive impairment, and normal aging: An exploratory study[J]. Brain Sci, 2023, 13(2): 265-265. |
[25] | LI W, WEN W, CHEN X, et al. Functional evolving patterns of cortical networks in progression of Alzheimer's disease: a graph-based resting-state fMRI Study[J]. Neural plastic, 2020, 2020: 7839536. |
[26] | FRIEDMAN J, HASTIE T, TIBSHIRANI R. Sparse inverse covariance estimation with the graphical lasso[J]. Biostat, 2008, 9(3): 432-441. |
[27] |
WILSON R S, MAYHEW S D, ROLLINGS D T, et al. Influence of epoch length on measurement of dynamic functional connectivity in wakefulness and behavioural validation in sleep[J]. NeuroImage, 2015, 112: 169-179.
doi: S1053-8119(15)00171-8 pmid: 25765256 |
[28] | SEN B, CHU S, PARHI K K. Ranking regions, edges and classifying tasks in functional brain graphs by sub-graph entropy[J]. Sci Rep, 2019, 9(1): 1-20. |
[29] | WANG H, ZHU R X, DAI Z P, et al. The altered temporal properties of dynamic functional connectivity associated with suicide attempt in bipolar disorders[J]. Pro Neuropsychopharmacol Biol Psychiatry, 2023, 129: 110898. |
[30] | VAN J H H D, LING M J, WICK V T, et al. Dynamic functional connectivity in pediatric mild traumatic brain injury[J]. NeuroImage, 2023, 285: 120470. |
[31] | WEI C B, GONG S T, ZOU Q, et al. A comparative study of structural and metabolic brain networks in patients with mild cognitive impairment[J]. Front Aging Neurosci, 2021, 13: 774607. |
[32] | GAO X, XU X W, HUA X Y, et al. Group similarity constraint functional brain network estimation for mild cognitive impairment classification[J]. Front Neurosci, 2020, 14: 165. |
[33] | LI Y J, AN S, ZHANG T L, et al. Triple-network analysis of Alzheimer’s disease based on the energy landscape[J]. Front Neurosci, 2023, 17: 1171549. |
[34] | CHEN Z H, CHEN K L, LI Y X, et al. Structural, static, and dynamic functional MRI predictors for conversion from mild cognitive impairment to Alzheimer’s disease: Inter-cohort validation of Shanghai memory study and ADNI[J]. Hum Brain Mapp, 2023, 45(1): e26529. |
[1] | LIU Peng, ZHONG Yu-min, WANG Li-jia. Automatic Segmentation of Right Ventricle in Cine Cardiac Magnetic Resonance Image Based on a Dense and Multi-Scale U-net Method [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 456-468. |
[2] | WANG Li-jia, SU Xin-yu, LI Ya, HU Li-wei, NIE Sheng-dong. Segmentation of Right Ventricle in Cardiac Cine MRI Using COLLATE Fusion-Based Multi-Atlas [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 407-416. |
[3] | SU Xin-yu, WANG Li-jia, NIE Sheng-dong, HU Li-wei, ZHONG Yu-min. Progress of Right Ventricle Segmentation from Short-Axis Images Acquired with Cardiac Cine MRI [J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 377-391. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||