1 |
RILEY J W. Rubidium atomic frequency standards for GPS block ⅡR[C]//Proceedings of 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting. Vienna, Virginia, 1990: 221-230.
|
2 |
DUPUIS R T, LYNCH T J, VACCARO J R, et al. Rubidium frequency standard for the GPS ⅡF program and modifications for the RAFSMOD program[C]//Proceedings of the 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2010). 2010: 781-788
|
3 |
RILEY J W. A history of the rubidium frequency standard[OL]. http://ieee-uffc.org/about-us/history/a-history-of-the-rubidium-frequency-standard.pdf. 2019.
|
4 |
iSpace+ Space Qualified RAFS Spec[R]. https://www.orolia.com/sites/default/files/document-files/Spectratime-RAFS-Spec-01-19-21.pdf. 2021.
|
5 |
MEI G H, ZHONG D, AN S F, et al. Main features of space rubidium atomic frequency standard for BeiDou satellites[C]//2016 European Frequency and Time Forum (EFTF). IEEE, 2016: 1-4.
|
6 |
MEI G H , ZHAO F , Qi F , et al. Characteristics of the space-borne rubidium atomic clocks for the BeiDou Ⅲ navigation satellite system[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2021, 51 (1): 118- 124.
|
|
梅刚华, 赵峰, 祁峰, 等. 用于北斗三号卫星导航系统的星载铷原子钟特性[J]. 中国科学: 物理学力学天文学, 2021, 51 (1): 118- 124.
|
7 |
HAO Q , LI W B , HE S G , et al. A physics package for rubidium atomic frequency standard with a short-term stability of 2.4×10- 13τ-1/2[J]. Rev Sci Instrum, 2016, 87 (12): 123111.
doi: 10.1063/1.4972567
|
8 |
NIE S, WANG P F, QIU Z J, et al. A lamp-pumped rubidium atomic frequency standard with a short-term stability at the level of 2×10-13τ-1/2[C]//China Satellite Navigation Conference (CSNC) 2019 proceedings. Springer, Singapore, 2019: 556-563.
|
9 |
BANDI T , AFFOLDERBACH C , STEFANUCCI C . et al, Compact high-performance continuous-wave double-resonance rubidium standard with 1.4×10-13τ-1/2 stability[J]. IEEE transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61 (11): 1769- 1778.
doi: 10.1109/TUFFC.2013.005955
|
10 |
VANIER J . On the signal-to-noise ratio and short-term stability of passive rubidium frequency standards[J]. IEEE T Instrum Meas, 1981, 30 (4): 277- 282.
|
11 |
XU F , HAO Q , WANG P F , et al. A high signal to noise ratio physics package with a slotted-tube cavity for rubidium atomic clock[J]. Acta Metrologica Sinica, 2016, 37 (4): 437- 440.
|
|
许风, 郝强, 王鹏飞, 等. 基于开槽管腔的高信噪比铷原子钟物理系统[J]. 计量学报, 2016, 37 (4): 437- 440.
|
12 |
MICALIZIO S , GODONE A , LEVI F , et al. Pulsed optically pumped 87Rb vapor cell frequency standard: A multilevel approach[J]. Phys Rev A, 2009, 79 (1): 013403.
doi: 10.1103/PhysRevA.79.013403
|
13 |
MEI G H, ZHONG D, AN S F, et al. Miniaturized microwave cavity for atomic frequency standard: U.S. Patent, 6, 225, 870[P], 2001-05-01.
|
14 |
STEFANUCCI C , BANDI T , MERLI F , et al. Compact microwave cavity for high performance rubidium frequency standards[J]. Rev Sci Instrum, 2012, 83, 104706.
doi: 10.1063/1.4759023
|