[1] KLEPPNER D, GOLDENBERG H M, RAMSEY N F. Theory of the hydrogen maser[J]. Phys Rev, 1962, 126:603-608. [2] PETERS H E. Hydrogen masers using cavity frequency-switching servos:Present system design and possible improvements[J]. Metrologia, 2006, 43:353-360. [3] DEMIDOV N, VORONTSOV V, BELYAEV A, et al. Studies of a short and long-term stability of an hydrogen maser with stand alone cavity auto tuning[C]. Gothenburg:Proceedings of 26th European Frequency and Time Forum Meeting. USA:IEEE, 2012:488-493. [4] ALEYNIKOV M S, BLINOV I Y. Parameters of double selection of atoms in a hydrogen maser and the use of its signal in a fountain-type frequency standard[J]. Meas Tech+, 2015, 58(8):892-897. [5] ALEYNIKOV M S. A study of atomic magnetic transitions during operation of an H-maser double-state selection system[J]. Meas Tech+, 2016, 59(3):235-238. [6] BOYKO A I, ALEYNIKOV M S. An active hydrogen maser with enhanced short-term stabilit[J]. Meas Tech+, 2014, 56(10):1140-1145. [7] ALEYNIKOV M S. Magnetic state selection impact on double resonance effect in H-maser[C]. New Orleans:2016 IEEE International Frequency Control Symposium (IFCS), 2016. [8] LAURENT P, MASSONNET D, CACCIAPUOTI L, et al. The ACES/PHARAO space mission[J]. CR Phys, 2015, 16(5):540-552. [9] LITVINOV D A, RUDENKO V N, ALAKOZ A V, et al. Probing the gravitational redshift with an earth-orbiting satellite[J]. Phys Lett A, 2018, 382(33):2192-2198. [10] ASHBY N, HEAVNER T P, JEFFERTS S R, et al. Testing local position invariance with four cesium fountain primary frequency standards and four NIST hydrogen masers[J]. Phys Rev Lett, 2007, 98(7):070802. [11] TURYSHEV S G, NAN YU, TOTH V T. General relativistic observables for the ACES experiment[J]. Phys Rev D, 2016, 93:045027. [12] JORNOD A, GOUJON D, GRITTI D, et al. The 35kg space active hydrogen maser (shm-35) for ACES[C]. Tampa:Proceedings of the 2003 IEEE International Frequency Control Symposium and Pda exhibition Jointly with 17th European Frequency and Time Forum, 2003:82-85. [13] ZIVANOV S, SCHWEDA H, GOUJON D, et al. Physics package of the 35kg space active hydrogen maser for the ACES space mission of ESA[C]. Geneva:Proceedings of the IEEE International Frequency Control Symposium Jointly with the 21st European Frequency and Time Forum, 2007:637-641. [14] SCHWEDA H, ZIVANOV S, PERRUCHOUD G, et al. Performance demonstration of the onboard active hydrogen maser for the ACES space mission of ESA[C]. Geneva:Proceedings of the IEEE International Frequency Control Symposium Jointly with the 21st European Frequency and Time Forum, 2007:1116-1121. [15] YANG R F, ZHOU T Z, CHEN H B, et al. A new method to reduce frequency-temperature coefficient of sapphire loaded cavities for compact hydrogen masers[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2010, 57(3):583-586. [16] YANG R F, ZHOU T Z, WANG N R, et al. Designs of a miniaturized sapphire loaded cavity for space-borne hydrogen masers[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2010, 57(3):587-591. [17] VANIER J, AUDOIN C. The quantum physics of atomic frequency standards[M]. Philadelphia:IOP Publishing Ltd, 1989:452-457, 1012-1015. [18] CRAMPTON S B, WANG H T M. Duration of hydrogen atom spin exchange collisions[J]. Phys Rev A, 1975, 12:1305-1312. [19] HE K L, ZHANG W Q. Study on miniaturized hydrogen maser with dielectric loaded resonance cavity[J]. Chinese Journal of Scientific Instrument, 2016, 37(5):1164-1171. 何克亮, 张为群. 介质加载谐振腔的小型化氢脉泽的研究[J]. 仪器仪表学报, 2016, 37(5):1164-1171. [20] 王义遒, 王庆吉, 傅济时, 等. 量子频标原理[M]. 北京:北京大学出版社, 1986:424, 452-453 [21] CHEN P F, XIE Y H, LIN C F. Induction of hydrogen ramsey interference with pulsed microwave[J]. Chinese J Magn Reson, 2013, 30(3):361-370. 陈鹏飞, 谢勇辉, 林传富. 脉冲微波激发氢原子Ramsey干涉研究[J]. 波谱学杂志, 2013, 30(3):361-370. |