Chinese Journal of Magnetic Resonance ›› 2025, Vol. 42 ›› Issue (2): 103-116.doi: 10.11938/cjmr20243132cstr: 32225.14.cjmr20243132
• Articles • Previous Articles Next Articles
Received:
2024-10-14
Published:
2025-06-05
Online:
2025-01-14
Contact:
*Tel: 13761603606, E-mail: CLC Number:
GU Jiajia, WANG Yuanjun. Hybrid Attention and Multiscale Module for Alzheimer's Disease Classification[J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 103-116.
Table 3
Ablation results of different modules
模型 | ACC/(%) | SPE/(%) | SEN/(%) | PRE/(%) | F1/(%) |
---|---|---|---|---|---|
3D CNet | 84.26(±2.53) | 92.13 | 84.26 | 87.38 | 84.00 |
3D RNet | 87.45(±2.44) | 93.72 | 88.20 | 88.65 | 87.61 |
3D HAMS+CNet | 89.20(±1.53) | 94.60 | 89.21 | 89.84 | 89.27 |
3D HAM+RNet | 93.39(±1.31) | 96.70 | 93.39 | 93.46 | 93.42 |
3D MS+RNet | 91.73(±1.80) | 95.90 | 91.80 | 92.16 | 91.83 |
3D HAMSNet | 94.14(±1.03) | 97.07 | 94.14 | 94.22 | 94.17 |
Table 5
Comparison of experimental results
模型 | ACC/(%) | SPE/(%) | SEN/(%) | PRE/(%) | F1/(%) |
---|---|---|---|---|---|
3D_VGG16 | 69.29(±5.79) | 84.64 | 69.34 | 72.64 | 68.80 |
3D_DensNet121 | 74.56(±2.37) | 87.28 | 76.10 | 77.59 | 74.17 |
3D_ResNet34 | 83.26(±2.53) | 89.03 | 83.32 | 84.40 | 82.86 |
3D_ResNet50 | 87.45(±2.44) | 93.72 | 88.20 | 88.65 | 87.61 |
3D ViT | 69.93(±2.41) | 82.40 | 69.81 | 69.62 | 69.39 |
3D HAMSNet | 94.14(±1.03) | 97.07 | 94.14 | 94.22 | 94.17 |
[1] | WANG Y Q, LIANG J H, JIA R X, et al. Alzheimer disease in China (2015-2050) estimated using the 1% population sampling survey in 2015[J]. Chinese Journal of Alzheimer's Disease and Related Disorders, 2019, 2(1): 289-298. |
王英全, 梁景宏, 贾瑞霞, 等. 2020-2050年中国阿尔茨海默病患病情况预测研究[J]. 阿尔茨海默病及相关病, 2019, 2(1): 289-298. | |
[2] | XIA Z, YUE G, XU Y, et al. A novel end-to-end hybrid network for Alzheimer's disease detection using 3D CNN and 3D CLSTM[C]// 2020 IEEE 17th international symposium on biomedical imaging (ISBI). IEEE, 2020: 1-4. |
[3] | QIAN C Y, WANG Y J. Research progress on imaging classification of Alzheimer’s disease based on deep learning[J]. Chinese J Magn Reson, 2023, 40(2): 220-238. |
钱程一, 王远军. 基于深度学习的阿尔兹海默症影像学分类研究进展[J]. 波谱学杂志, 2023, 40(2): 220-238.
doi: 10.11938/cjmr20223013 |
|
[4] | ZHANG F, TIAN S, CHEN S, et al. Voxel-based morphometry: improving the diagnosis of Alzheimer’s disease based on an extreme learning machine method from the ADNI cohort[J]. Neuroscience, 2019, 414: 273-279. |
[5] |
HUA X, LEOW A D, PARIKSHAK N, et al. Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: an MRI study of 676 AD, MCI, and normal subjects[J]. NeuroImage, 2008, 43(3): 458-469.
doi: 10.1016/j.neuroimage.2008.07.013 pmid: 18691658 |
[6] | LIU M, ZHANG D, ADELI E, et al. Inherent structure-based multiview learning with multitemplate feature representation for Alzheimer's disease diagnosis[J]. IEEE T Biomed Eng, 2015, 63(7): 1473-1482. |
[7] | ZHAO X, ZHANG X, LI X J, et al. Multimodal glioma segmentation with fusion of multiple self-attention and deformable convolutions[J]. Chinese J Magn Reson, 2023, 40(3): 280-292. |
赵欣, 张鑫, 李鑫杰, 等. 融合多重自注意力和可变形卷积的多模态脑胶质瘤分割[J]. 波谱学杂志, 2023, 40(3): 280-292.
doi: 10.11938/cjmr20233059 |
|
[8] | LI W, WANG Y, LIU Y. DMAF-Net: deformable multi-scale adaptive fusion network for dental structure detection with panoramic radiographs[J]. Dentomaxillofac Rad, 2024, 57(5):296-307. |
[9] | DAI Z, YI J, YAN L, et al. Pfemed: Few-shot medical image classification using prior guided feature enhancement[J]. Pattern Recognit, 2023, 134: 109108. |
[10] | JAIN R, JAIN N, AGGARWAL A, et al. Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images[J]. Cogn Syst Res, 2019, 57: 147-159. |
[11] | KANG W, LIN L, ZHANG B, et al. Multi-model and multi-slice ensemble learning architecture based on 2D convolutional neural networks for Alzheimer's disease diagnosis[J]. Comput Biol Med, 2021, 136: 104678. |
[12] | PAYAN A, MONTANA G. Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks[J]. arXiv preprint arXiv:1502.02506, 2015. |
[13] | BAKKOURI I, AFDEL K, BENOIS-PINEAU J, et al. Recognition of Alzheimer's disease on sMRI based on 3D multi-scale CNN features and a gated recurrent fusion unit[C]// 2019 international conference on content-based multimedia indexing (CBMI), IEEE, 2019: 1-6. |
[14] | YEE E, MA D, POPURI K, et al. Construction of MRI-based Alzheimer’s disease score based on efficient 3D convolutional neural network: Comprehensive validation on 7,902 images from a multi-center dataset[J]. J Alzheimer's Dis, 2021, 79(1): 47-58. |
[15] | YU S, LIAO W H. An Alzheimer’s disease classification algorithm based on 3D-ResNet[J]. Comput Eng & Sci, 2020, 42(6): 1068-1075. |
郁松, 廖文浩. 基于3D-ResNet的阿尔兹海默症分类算法研究[J]. 计算机工程与科学, 2020, 42(6): 1068-1075. | |
[16] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the European conference on computer vision (ECCV), 2018: 3-19. |
[17] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 770-778. |
[18] |
KWAK K, STANFORD W, DAYAN E, et al. Identifying the regional substrates predictive of Alzheimer's disease progression through a convolutional neural network model and occlusion[J]. Hum Brain Mapp, 2022, 43(18): 5509-5519.
doi: 10.1002/hbm.26026 pmid: 35904092 |
[19] | RAJU M, THIRUPALANI M, VIDHYABHARATHI S, et al. Deep learning based multilevel classification of Alzheimer’s disease using MRI scans[C]// IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2021, 1084(1): 012017. |
[20] | QIU S, JOSHI P S, MILLER M I, et al. Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification[J]. Brain, 2020, 143(6): 1920-1933. |
[21] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2018: 7132-7141. |
[22] | WANG Q, WU B, ZHU P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020: 11534-11542. |
[23] | LIU Z, LU H, PAN X, et al. Diagnosis of Alzheimer’s disease via an attention-based multi-scale convolutional neural network[J]. Knowl-Based Syst, 2022, 238: 107942. |
[24] |
JACK JR C R, BERNSTEIN M A, FOX N C, et al. The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods[J]. J Magn Reson Imaging, 2008, 27(4): 685-691.
doi: 10.1002/jmri.21049 pmid: 18302232 |
[25] |
JENKINSON M, BECKMANN C F, BEHRENS T E J, et al. FSL[J]. NeuroImage, 2012, 62(2): 782-790.
doi: 10.1016/j.neuroimage.2011.09.015 pmid: 21979382 |
[26] | SELVARAJU R R, COGSWALL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]// Proceedings of the IEEE international conference on computer vision, 2017: 618-626. |
[27] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]// International Conference on Learning Representations (ICLR), 2015: 1-14. |
[28] | HUANG G, LIU Z, VAN Der MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2017: 4700-4708. |
[29] | DOSOVITSKIY A, ALEXEY D, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv preprint arXiv: 2010.11929, 2020. |
[30] | TONG Y, LI Z, HUANG H, et al. Research of spatial context convolutional neural networks for early diagnosis of Alzheimer’s disease[J]. J Supercomput, 2024, 80(4): 5279-5297. |
[1] | ZHANG Haowei, WANG Yuncheng, LIU Ying. Brain Age Assessment of Patients with Major Depressive Disorder Based on Convolutional Neural Network [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 139-150. |
[2] | Yi-feng YANG, Zhang-xuan QI, Sheng-dong NIE. Differentiation of Benign and Malignant Breast Lesions Based on Multimodal MRI and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 401-412. |
[3] | Ying LIU,Yi-yun GUO,Jing-cong CHEN,Hao-wei ZHANG. Automatic Precise Segmentation of Cerebellopontine Angle Tumor Based on Faster-RCNN and Level-Set Method [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 381-391. |
[4] | WANG Wan-ting, SU Shi, JIA Sen, LIANG Dong, WANG Hai-feng. Reconstruction of Simultaneous Multi-Slice MRI Data by Combining Virtual Conjugate Coil Technology and Convolutional Neural Network [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 407-421. |
[5] | LOU Yun-zhong, LIU Ying, JIANG Hua, ZHANG Hao-wei. A Deep Learning Algorithm for Classifying Meningioma and Auditory Neuroma in the Cerebellopontine Angle from Magnetic Resonance Images [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 300-310. |
[6] | LIU Ke-wen, LIU Zi-long, WANG Xiang-yu, CHEN Li, LI Zhao, WU Guang-yao, LIU Chao-yang. Prostate Cancer Diagnosis Based on Cascaded Convolutional Neural Networks [J]. Chinese Journal of Magnetic Resonance, 2020, 37(2): 152-161. |
[7] | CHENG Hui-tao, WANG Shan-shan, KE Zi-wen, JIA Sen, CHENG Jing, QIU Zhi-lang, ZHENG Hai-rong, LIANG Dong. A Deep Recursive Cascaded Convolutional Network for Parallel MRI [J]. Chinese Journal of Magnetic Resonance, 2019, 36(4): 437-445. |
Viewed | ||||||||||||||||||||||
Full text 58
|
|
|||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||