Chinese Journal of Magnetic Resonance ›› 2025, Vol. 42 ›› Issue (2): 184-194.doi: 10.11938/cjmr20243125cstr: 32225.14.cjmr20243125
• Articles • Previous Articles Next Articles
LI Yujiang1, ZHAO Wei1, TAO Le1, LU Bohua1, ZHENG Guo1, ZHANG Haiyan2,*(), GUO Xiaohe1,#(
), ZHAO Tianzeng1,2
Received:
2024-08-01
Published:
2025-06-05
Online:
2024-09-29
Contact:
*Tel: 0371-65511668, E-mail: CLC Number:
LI Yujiang, ZHAO Wei, TAO Le, LU Bohua, ZHENG Guo, ZHANG Haiyan, GUO Xiaohe, ZHAO Tianzeng. NMR Data Analysis of Acarbose[J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 184-194.
Table 1
1H NMR data of acarbose (DMSO-d6, 400 MHz)
原子编号 | δH | J/Hz | 1H-1H COSY | 文献[11][δH (J/Hz), D2O] | ||
---|---|---|---|---|---|---|
A | 1 | 3.28 | m | H-2, NH, H-7 | A | 3.50(4.5) |
2 | 3.38 | m | H-1, H-3, OH-2 | 3.62 | ||
OH-2 | 5.07 | d(6.4) | H-2 | |||
3 | 3.58 | m | H-2, H-4, OH-3 | 3.72 | ||
OH-3 | 4.68 | d(4.0) | H-3 | |||
4 | 3.66 | m | H-3, OH-4 | 4.00(7.0) | ||
OH-4 | 4.56 | d(6.8) | H-4 | |||
6 | 3.94 | m | OH-6 | 4.07(13.5),4.18(13.5) | ||
OH-6 | 4.60 | t(5.2, 5.2) | H-6 | |||
7 | 5.59 | d(3.6) | H-1 | 5.86(4.5) | ||
B | 1' | 4.92 | d(3.2) | H-2' | B | 5.25(3.0) |
2' | 3.28 | m | H-1', OH-2' | 3.57 | ||
OH-2' | 5.45 | d(6.0) | H-2' | |||
3' | 3.28 | m | H-4', OH-3' | 3.56 | ||
OH-3' | 5.51 | d(6.4) | H-3' | |||
4' | 2.13 | t(9.2, 9.2) | H-3', H-5' | 2.43(9.0,9.5) | ||
NH | 5.48 | d(2.8) | H-1 | |||
5' | 3.58 | m | H-6' | 3.71 | ||
6' | 1.16 | d(6.4) | H-5' | 1.30 | ||
Cα | 1'' | 5.00 | d(5.2) | H-2'' | C | 5.34 |
2'' | 3.28 | m | H-1'', OH-2'' | 3.59 | ||
OH-2'' | 5.52* | d(8.0) | H-2'' | |||
3'' | 3.28 | m | OH-3'' | |||
OH-3'' | 5.01** | d(6.8) | H-3'' | |||
4'' | 3.28 | m | 3.60 | |||
5'' | 3.28 | m | H-6''α, H-6''β | 3.79 | ||
6''α | 3.58 | m | H-6''β, OH-6'' | 3.74 | ||
6''β | 3.66 | m | H-6''α, OH-6'' | 3.88 | ||
OH-6'' | 4.57 | t(6.4, 6.4) | H-6''α, H-6''β | |||
Cβ | 1''' | 5.00 | d(5.2) | H-2''' | ||
2''' | 3.28 | m | H-3''', H-1''', OH-2''' | |||
OH-2''' | 5.53* | d(6.0) | H-2''' | |||
3''' | 3.58 | m | H-2''', 4''' | |||
OH-3''' | 4.58** | d(6.4) | H-3''' | |||
4''' | 3.28 | m | H-3''' | |||
5''' | 3.28 | m | H-6'''α, H-6'''β | |||
6'''α | 3.58 | m | H-5''', H-6'''β, OH-6''' | |||
6'''β | 3.66 | m | H-5''', H-6'''α, OH-6''' | |||
OH-6''' | 4.57 | t(6.4, 6.4) | H-6'''α, H-6'''β | |||
Dα | 1'''' | 4.91 | t(4.4, 4.4) | H-2'''', OH-1'''' | Dα | 5.19(4.0) |
OH-1'''' | 6.37 | d(4.4) | H-1'''' | |||
2'''' | 3.19 | m | H-3'''', H-1'''', OH-2'''' | 3.56 | ||
OH-2'''' | 4.65 | d(6.4) | H-2'''' | |||
3'''' | 3.66 | m | H-2'''', H-4'''', OH-3'''' | 3.92 | ||
OH-3'''' | 5.32 | d(3.6) | H-3'''' | |||
4'''' | 3.28 | m | H-3'''', 5'''' | |||
5'''' | 3.66 | m | H-4'''', H-6''''α | 3.88 | ||
6''''α | 3.58 | m | H-5'''', 6''''β, OH-6'''' | 3.78 | ||
6''''β | 3.66 | m | H-6''''α, OH-6'''' | 3.89 | ||
OH-6'''' | 4.42 | t(5.6, 5.6) | H-6''''α, H-6''''β | |||
Dβ | 1''''' | 4.31 | dd(6.4, 7.6) | H-2''''', OH-1''''' | Dβ | 4.60(8.0) |
OH-1''''' | 6.70 | d(6.4) | H-1''''' | |||
2''''' | 2.95 | ddd(8.0, 7.6, 5.2) | H-3''''', H-1''''', OH-2''''' | 3.23(9.0,8.0) | ||
OH-2''''' | 4.99 | d(5.2) | H-2''''' | |||
3''''' | 3.38 | m | H-2''''', H-4''''', OH-3''''' | 3.73 | ||
OH-3''''' | 5.47 | d(6.4) | H-3''''' | |||
4''''' | 3.28 | m | H-5''''', H-3''''' | 3.55 | ||
5''''' | 3.19 | m | H-4''''', H-6'''''α, H-6'''''β | 3.54 | ||
6'''''α | 3.58 | m | H-5''''', H-6'''''β, OH-6''''' | 3.78 | ||
6'''''β | 3.66 | m | H-5''''', H-6'''''α, OH-6''''' | 3.89 | ||
OH-6''''' | 4.52 | t(5.6, 5.6) | H-6'''''α, H-6'''''β |
Table 2
13C NMR data of acarbose (DMSO-d6, 400 MHz)
原子编号 | δC | DEPT | HSQC | HMBC(δH) | 文献[12][δC, D2O] | ||
---|---|---|---|---|---|---|---|
A | 1 | 56.0 | CH | 3.28 | H-2,3, OH-2, H-7 | A | 58.7 |
2 | 70.8 | CH | 3.38 | H-3, OH-4, OH-3, OH-2, H-7 | 75.2 | ||
3 | 72.5 | CH | 3.58 | H-1, H-4, OH-4, OH-3, OH-2 | 75.2 | ||
4 | 71.2 | CH | 3.66 | H-3, H-6, OH-4, OH-3, OH-2, H-7 | 74.1 | ||
5 | 140.3 | C | H-3, H-4, H-6, OH-4, OH-6, H-7 | 143.2 | |||
6 | 61.3 | CH2 | 3.94 | H-4, OH-6, H-7 | 64.1 | ||
7 | 121.4 | CH | 5.59 | H-4, H-6 | 124.3 | ||
B | 1' | 101.1 | CH | 4.92 | H-2', 3', OH-2' | B | 102.5 |
2' | 72.0 | CH | 3.28 | OH-2', OH-3' | 73.8 | ||
3' | 73.7 | CH | 3.28 | H-4', H-2', H-1', OH-2', NH, OH-3' | 75.7 | ||
4' | 64.9 | CH | 2.13 | H-6', H-2', 3', H-5', NH, OH-3' | 67.1 | ||
5' | 69.5 | CH | 3.58 | H-6', H-4', H-1' | 72.5 | ||
6' | 18.3 | CH3 | 1.16 | H-5' | 20.0 | ||
Cα | 1'' | 100.5 | CH | 5.00 | H-2'', 3'', 5'', OH-2'' | C | 102.3 |
2'' | 71.9 | CH | 3.28 | H-3'', 4'', H-1'', OH-3'', OH-2'' | 74.5 | ||
3'' | 72.8 | CH | 3.28 | H-2'', 4'', 5'', H-1'', OH-3'', OH-2'' | 75.9 | ||
4'' | 79.6* | CH | 3.28 | H-6''α, H-6''β | 79.7 | ||
5'' | 73.3 | CH | 3.28 | H-3'', 4'', H-6''β, OH-6'' | 74.0 | ||
6'' | 60.3 | CH2 | 3.58, 3.66 | H-4'',OH-5'',OH-6'' | 63.1 | ||
Cβ | 1''' | 100.5 | CH | 5.00 | H-2''', 5''', OH-2''' | ||
2''' | 71.9 | CH | 3.28 | H-4''', OH-3''', H-1''', OH-2''' | |||
3''' | 72.1 | CH | 3.58 | H-2''', 4''', OH-3''', OH-2''' | |||
4''' | 79.7* | CH | 3.28 | H-6'''α, H-6'''β | |||
5''' | 73.3 | CH | 3.28 | H-4''', H-6'''β, OH-6''' | |||
6''' | 60.3 | CH2 | 3.58, 3.66 | H-4''', H-5''',OH-6''' | |||
Dα | 1'''' | 92.1 | CH | 4.91 | OH-2'''', OH-1'''' | Dα | 94.5 |
2'''' | 71.8 | CH | 3.19 | H-4'''', OH-2'''', OH-1'''' | 74.0 | ||
3'''' | 73.1 | CH | 3.66 | H-4'''', OH-2'''', OH-3'''' | 75.7 | ||
4'''' | 80.5 | CH | 3.28 | H-6''''α, H-3'''', 5'''', 6'''', 6''''β, H-1'', OH-3'''' | 80.00 | ||
5'''' | 70.2 | CH | 3.66 | H-4'''', OH-6'''', H-1'''' | 73.6 | ||
6'''' | 60.6 | CH2 | 3.58, 3.66 | H-4'''', H-5'''', OH-6'''' | |||
Dβ | 1''''' | 96.8 | CH | 4.31 | H-2''''', H-5''''', OH-2''''', OH-1''''' | Dβ | 98.3 |
2''''' | 74.3 | CH | 2.95 | H-4''''', OH-2''''', OH-3''''', OH-1''''' | 76.5 | ||
3''''' | 76.4 | CH | 3.38 | H-2''''', H-4''''', OH-2''''', OH-3''''' | 78.7 | ||
4''''' | 80.0 | CH | 3.28 | H-5''''', H-3''''', H-6'''''α, H-6'''''β, H-1''', OH-3''''' | 79.9 | ||
5''''' | 75.0 | CH | 3.19 | H-4''''', OH-6''''', OH-1''''' | 77.1 | ||
6''''' | 60.7 | CH2 | 3.58, 3.66 | H-4''''', H-5''''', OH-6''''' | 63.1 |
[1] | WEHMEIER U F, PIEPERSBERG W. Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose[J]. J Appl Microbio Biotechnol, 2004, 63(6): 613-625. |
[2] | MELANDER A, LEBOVITZ H E, FABER O K. Sulfonyhueas. why’ which’ and how?[J]. J Diabetes Care, 1990, 13(3): 18-25. |
[3] | CAMPBELL L K, WHITE J R, CAMPBELL R K. Acarbose: Its role in the treatment of diabetes mellitus[J]. J Ann Pharmacother, 1996, 30(11): 1255-1262. |
[4] | FENG Z H, WANG Y S, ZHENG Y G. Progress in biosynthesis pathway of acarbose[J]. Biotechnology Bulletin, 2011, 27(8): 60-66. |
冯志华, 王远山, 郑裕国. 阿卡波糖的生物合成途径研究进展[J]. 生物技术通报, 2011, 27(8): 60-66. | |
[5] | WETTERGREEN S A, SHETH S, MALVEAUX J. Effects of the addition of acarbose to insulin and non-insulin regimens in veterans with type 2 diabetes mellitus[J]. Pharm Pract, 2016, 14(4): 1-4. |
[6] | WENG C Y, SHI L Z, WANG Y J, et al. Transcriptome analysis of Actinoplanes utahensis reveals molecular signature of saccharide impact on acarbose biosynthesis[J]. 3 Biotech, 2020, 10(11): 473. |
[7] | SCHAFFERT L, SCHNEIKER-BEKEL S, DYMEK S, et al. Essentiality of the maltase AmlE in maltose utilization and its transcriptional regulation by the repressor AmlR in the acarbose producing bacterium actinoplanes sp. SE50/110[J]. Front Microbiol, 2019, 10: 2448. |
[8] | LI Z X, YANG S B, ZHANG Z Y, et al. Enhancement of acarbose production by genetic engineering and fed‑batchfermentation strategy in Actinoplanes sp.SIPI12‑34[J]. Microb Cell Fact, 2022, 21: 240. |
[9] | JUNGE B, HEIKER F R, KURZ T, et al. Untersuchungen zur struktur des α-D-glucosidaseinhibitors acarbose[J]. Carbohyd Res, 1984, 128(2): 235-268. |
[10] | TUYEN D T, YEW G Y, CUONG N T, et al. Selection, purification, and evaluation of acarbose-an a-glucosidase inhibitor from Actinoplanes sp[J]. Chemosphere, 2021, 265: 129167. |
[11] | GOEKE K, DREPPER A and PAPE H. Formation of acarbose phosphate by a cell-free extract from e acarbose producer Actinoplanes sp[J]. J Antibiotic, 1996, 49(7): 661-663. |
[12] | LIU Y, BAI J, ZHAO Z, et al. Effects of methanol and DMSO on assaying illegal addition offluoxetine hydrochloride by 19F-qNMR[J]. Chinese Journal of New Drugs, 2020, 29(2): 220-223. |
刘阳, 白洁, 赵庄, 等. 甲醇和二甲基亚砜对19F核磁共振定量法测定盐酸氟西汀非法添加的影响[J]. 中国新药杂志, 2020, 29(2): 220-223. | |
[13] | LU A M, JIANG H M, LV B, et al. Quantitative determination of caffeine in beverages by 1H NMR with internal standard method[J]. Journal of Nanjing Agricultural University, 2014, 37(6): 119-124. |
卢爱民, 蒋红梅, 吕波, 等. 核磁共振氢谱内标法测定饮料中咖啡因含量[J]. 南京农业大学学报, 2014, 37(6): 119-124. | |
[14] | XU X J, WANG X Y, ZHAO J Y, et al. The study on quantitative hydrogen nuclear magnetic resonance[J]. Guangdong Chemical Industry, 2020, 4(47): 86-88. |
徐雪晶, 万向勇, 赵锦漪, 等. 氢核磁共振定量法初探[J]. 广东化工, 2020, 4(47): 86-88. | |
[15] | ZHAI C G, WANG P C, SHAN Y B, et al. Structure characterization and analgesic activity of novel pyrazolo[3,4-d]pyrimidin-4-one derivatives[J]. Chinese J Magn Reson, 2023, 40(1): 1-9. |
翟重钢, 汪鹏程, 单玉宝, 等. 新型吡唑并[3,4-d]嘧啶-4-酮类衍生物的结构表征和阵痛活性[J]. 波谱学杂志, 2023, 40(1): 1-9.
doi: 10.11938/cjmr20222995 |
|
[16] | WANG S H, ZHANG J D, YIN X M, et al. NMR assignments of 6-(4-chlorphenoxy)-tetrazolo[5,1-a]phthalazine[J]. Chinese J Magn Reson, 2020, 37(3): 390-398. |
王思宏, 张敬东, 尹秀梅, 等. 6-(4-氯苯氧基)四唑并[5,1-a]酞嗪的核磁共振谱峰归属[J]. 波谱学杂志, 2020, 37(3): 390-398.
doi: 10.11938/cjmr20192776 |
|
[17] | 赵天增. 核磁共振氢谱[M]. 北京: 北京大学出版社, 1981. |
[18] | 赵天增. 核磁共振碳谱[M]. 郑州: 河南科学技术出版社, 1993. |
[19] | 赵天增, 秦海林, 张海艳, 等. 核磁共振二维谱[M]. 北京: 化学工业出版社, 2017. |
[1] | CHEN Lei, LIU Hongbing, LIU Huili, WANG Liying. Quantitative Refocused INEPT Method Based on Simulated Annealing Optimization [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 30-42. |
[2] | SONG Linhong, CHAI Xin, ZHANG Xu, JIANG Bin, LIU Maili. Optimizing Sensitivity-enhanced Quantitative 13C NMR Experiment by Genetic Algorithm [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 365-375. |
[3] | ZHAO Beibei, ZHAN Jianhua, HU Qin, ZHU Qinjun, LIU Maili, ZHANG Xu. NMR Study on the Mechanism of Cytochrome c Methionine Oxidation [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 246-257. |
[4] | ZHANG Rong,WANG Wei,GAO Yi,LIU Caiguang,WANG Zhenlin,QIN Yingyao,ZHANG Gong. Sensitivity Analysis of T2-T1 2D NMR Measurement Parameters in Shale Oil Reservoirs [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 122-135. |
[5] | Zhen-lin WANG, Rong ZHANG, Ni ZHANG, Jing-qi LIN, Ying-yao QIN, Gang CHEN, Gong ZHANG. A High-precision Processing Method of Two-dimensional NMR Logging Data Based on Component Compensation [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 174-183. |
[6] | Zi-hao WANG,He XU,Tao WANG,Shan-zhong YANG,Yun-sheng DING,Hai-bing WEI. NMR Spectroscopic Studies on (exo, endo) C-2 Monosubstituted Norbornene Derivatives [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 323-335. |
[7] | Shu-huai ZHANG,Hui MA,Zhao-hui GUO,Min-jun MA,Yan QIAO,Ying-xiong WANG. Interactions Between n-Butanol/Propionic Acid and Humic Acid Studied by NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 301-312. |
[8] | Meng-yu DOU,Qi ZHAO,Xiang-lin HOU,Lei LIU,Ming-xing TANG,Ying-xiong WANG. Structural Elucidation and Quantitative Analysis of Hydrogenation Products of Anthracene by NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 239-248. |
[9] | LI Yu-jiang, ZHAO Wei, GUO Xiao-he, TAO Le, ZHANG Xiang, ZHANG Hai-yan, ZHAO Tian-zeng. NMR Data Analysis of Manidipine Hydrochloride [J]. Chinese Journal of Magnetic Resonance, 2021, 38(1): 110-117. |
[10] | LI Ying-jun, YANG Hong-jing, LIU Ji-hong, JIN Kun, LIN Le-di, LIU Xue-jie. Assignments of NMR Spectral Data of a Novel Carbazole-Triazinoindole Based N-Acylhydrazone Derivative [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 496-504. |
[11] | WANG Si-hong, ZHANG Jing-dong, YIN Xiu-mei, LI Dong-hao, KAN Yu-he, HU Wei. NMR Assignments of 6-(4-chlorophenoxy)-tetrazolo[5,1-a]phthalazine [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 390-398. |
[12] | HOU Ke-jun, WU Jian-meng, GE Xiang, ZHANG Shi-mao. Calculating Porosity From Two-Dimensional NMR Relaxation Spectra of the Leikoupo Group's 4th Section [J]. Chinese Journal of Magnetic Resonance, 2020, 37(2): 162-171. |
[13] | NING Cai-fang, MA Min-jun, GUO Zhao-hui, ZHANG Shu-huai, QIAO Yan, WANG Ying-xiong. Interactions Between 5-Fluorouracil and PAMAM Dendrimers Studies by NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2019, 36(4): 555-562. |
[14] | LIU Wen-qing, SONG Yan-hong, WANG Xue-lu, YAO Ye-feng. In Operando Nuclear Magnetic Resonance Spectroscopy Study on Photocatalytic Methanol Reforming [J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 298-308. |
[15] | LI Hong-wei, YUAN Zhi-liang, XIA Bin. Determination of Apparent Protein Molecular Weight in Solution by Diffusion Ordered NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2018, 35(3): 280-286. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 65
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 83
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||