Chinese Journal of Magnetic Resonance ›› 2021, Vol. 38 ›› Issue (3): 301-312.doi: 10.11938/cjmr20212893
• Articles • Previous Articles Next Articles
Shu-huai ZHANG1,2,Hui MA1,2,Zhao-hui GUO1,2,Min-jun MA1,2,Yan QIAO1,2,*(),Ying-xiong WANG1,2,*()
Received:
2021-02-28
Online:
2021-09-05
Published:
2021-03-31
Contact:
Yan QIAO,Ying-xiong WANG
E-mail:qiaoy@sxicc.ac.cn;wangyx@sxicc.ac.cn
CLC Number:
Shu-huai ZHANG,Hui MA,Zhao-hui GUO,Min-jun MA,Yan QIAO,Ying-xiong WANG. Interactions Between n-Butanol/Propionic Acid and Humic Acid Studied by NMR Spectroscopy[J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 301-312.
Fig.4
The effect of solution pH on the chemical shift of n-butanol and propionic acid. (a) The original solution of n-butanol and propionic acid, pH=3.6; (b) Solution of n-butanol and propionic acid after pH adjustment with DCl and NaOD, pH=6.2; (c) Solution of n-butanol and propionic acid after addition of 20 mg/mL HA, pH=6.2
Table 1
Changes of T1 and T2 values calculated for protons of n-butanol and propionic acid with the concentration of HA
CHA/(mg/mL) | T1/s | T2/s | |||||||||||
H-1 | H-2 | H-3 | H-4 | H-5 | H-6 | H-1 | H-2 | H-3 | H-4 | H-5 | H-6 | ||
0 | 4.30 | 4.26 | 3.92 | 4.09 | 5.90 | 5.71 | 3.786 | 3.692 | 3.620 | 3.007 | 5.322 | 5.003 | |
1 | 1.48 | 1.49 | 1.39 | 1.25 | 1.95 | 1.53 | 0.279 | 0.276 | 0.283 | 0.231 | 0.442 | 0.378 | |
3 | 0.59 | 0.58 | 0.56 | 0.48 | 1.09 | 0.81 | 0.092 | 0.090 | 0.094 | 0.080 | 0.212 | 0.188 | |
5 | 0.52 | 0.51 | 0.39 | 0.42 | 1.04 | 0.77 | 0.079 | 0.078 | 0.081 | 0.067 | 0.205 | 0.171 | |
10 | 0.30 | 0.26 | 0.26 | 0.23 | 0.98 | 0.72 | 0.042 | 0.042 | 0.044 | 0.036 | 0.175 | 0.150 | |
15 | 0.15 | 0.08 | 0.08 | 0.09 | 0.85 | 0.63 | 0.018 | 0.021 | 0.022 | 0.016 | 0.127 | 0.119 | |
20 | 0.09 | 0.08 | 0.08 | 0.08 | 0.64 | 0.46 | 0.009 | 0.013 | 0.012 | 0.008 | 0.087 | 0.075 | |
25 | 0.09 | 0.07 | 0.07 | 0.07 | 0.68 | 0.46 | 0.009 | 0.013 | 0.012 | 0.007 | 0.084 | 0.084 | |
30 | 0.09 | 0.07 | 0.07 | 0.07 | 0.68 | 0.46 | 0.009 | 0.012 | 0.012 | 0.007 | 0.083 | 0.081 |
Table 2
Changes of τc correlation time values calculated for protons of n-butanol and propionic acid with theconcentration of humic acid
CHA/(mg/mL) | τc/ns | |||||
H-1 | H-2 | H-3 | H-4 | H-5 | H-6 | |
0 | 0.13 | 0.13 | 0.11 | 0.18 | 0.12 | 0.13 |
1 | 0.88 | 0.89 | 0.83 | 0.89 | 0.76 | 0.70 |
3 | 1.00 | 0.94 | 0.96 | 0.96 | 0.85 | 0.74 |
5 | 1.02 | 1.00 | 0.96 | 0.99 | 0.85 | 0.77 |
10 | 1.08 | 1.00 | 0.96 | 1.00 | 0.91 | 0.81 |
15 | 1.19 | 1.00 | 0.96 | 1.00 | 1.04 | 0.88 |
20 | 1.32 | 1.00 | 1.00 | 1.32 | 1.10 | 1.00 |
25 | 1.32 | 1.00 | 1.00 | 1.32 | 1.17 | 1.00 |
30 | 1.32 | 1.00 | 1.00 | 1.32 | 1.18 | 1.00 |
1 |
WANG X , JIANG X W . Application of rectification-pervaporation combined process in the recovery of alcohol products from Fischer-Tropsch waste water[J]. Chem Eng Res Des, 2019, 29 (3): 3- 7, 25, 21.
doi: 10.3969/j.issn.1007-6247.2019.03.002 |
汪旭, 蒋晓伟. 精馏-渗透汽化联合工艺在费托合成水回收醇类产品中的应用[J]. 化工设计, 2019, 29 (3): 3- 7, 25, 21.
doi: 10.3969/j.issn.1007-6247.2019.03.002 |
|
2 |
NEL R J J , DE KLERK A . Fischer−Tropsch aqueous phase refining by catalytic alcohol dehydration[J]. Ind Eng Chem Res, 2007, 46 (11): 3558- 3565.
doi: 10.1021/ie061555r |
3 | BHATNAGAR A , SILLANPää M . Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-A review[J]. Chem Eng J, 2010, 157 (2, 3): 277- 296. |
4 |
CHAI Z P . Research and application analysis of coal chemical wastewater treatment technology[J]. Chemical Enterprise Management, 2014, (29): 272- 274.
doi: 10.3969/j.issn.1008-4800.2014.29.240 |
柴振鹏. 煤化工废水处理技术研究及应用分析[J]. 化工管理, 2014, (29): 272- 274.
doi: 10.3969/j.issn.1008-4800.2014.29.240 |
|
5 | TIAN Z M , JIN C , HE X W . Engineering application of Fischer-Tropsch synthesis wastewater treatment by anaerobic technology[J]. Technology of Water Treatment, 2017, 43 (9): 101- 103. |
6 |
AHAD N , DE KLERK A . Fischer-Tropsch acid water processing by Kolbe electrolysis[J]. Fuel, 2018, 211, 415- 419.
doi: 10.1016/j.fuel.2017.09.075 |
7 |
LIAO X Y , WANG F , WANG Y Z , et al. Constructing Fe-based bi-MOFs for photo-catalytic ozonation of organic pollutants in Fischer-Tropsch waste water[J]. Appl Surf Sci, 2020, 509, 145378.
doi: 10.1016/j.apsusc.2020.145378 |
8 |
MA W W , HAN Y X , XU C Y , et al. Enhanced degradation of phenolic compounds in coal gasification wastewater by a novel integration of micro-electrolysis with biological reactor (MEBR) under the micro-oxygen condition[J]. Bioresour Technol, 2018, 251, 303- 310.
doi: 10.1016/j.biortech.2017.12.042 |
9 |
CHEN L G , ZHU Y L , ZHENG H Y , et al. Catalytic degradation of aqueous Fischer-Tropsch effluents to fuel gas over oxide-supported Ru catalysts and hydrothermal stability of catalysts[J]. J. Chem Technol Biotechnol, 2012, 87 (8): 1089- 1097.
doi: 10.1002/jctb.3719 |
10 |
QUEK X Y , PESTMAN R , VAN SANTEN R A , et al. Structure sensitivity in the ruthenium nanoparticle catalyzed aqueous-phase Fischer-Tropsch reaction[J]. Catal. Sci. Technol, 2014, 4 (10): 3510- 3523.
doi: 10.1039/C4CY00709C |
11 |
YAN L L , LIU J G , WANG X Z , et al. Ru catalysts supported by Si3N4 for Fischer-Tropsch synthesis[J]. Appl Surf Sci, 2020, 526, 146631.
doi: 10.1016/j.apsusc.2020.146631 |
12 |
WU F C , TSENG R L , JUANG R S . A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals[J]. J Environ Manage, 2010, 91 (4): 798- 806.
doi: 10.1016/j.jenvman.2009.10.018 |
13 | BHATNAGAR A , SILLANPää M . Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater-A short review[J]. Adv Colloid Interface Sci, 2009, 152 (1): 26- 38. |
14 | FU X H , LU L , GE Y Y , et al. Lignite resources and their physical properties in China[J]. Coal Sci Technol, 2012, 40 (10): 104- 108. |
傅雪海, 路露, 葛燕燕, 等. 我国褐煤资源及其物性特征[J]. 煤炭科学技术, 2012, 40 (10): 104- 108. | |
15 |
ZHAO T T , GE W Z , NIE Y X , et al. Highly efficient detoxification of Cr(Ⅵ) by brown coal and kerogen: Process and structure studies[J]. Fuel Process Technol, 2016, 150, 71- 77.
doi: 10.1016/j.fuproc.2016.05.001 |
16 |
ZHAO T T , GE W Z , YUE F , et al. Mechanism study of Cr(Ⅲ) immobilization in the process of Cr(Ⅵ) removal by Huolinhe lignite[J]. Fuel Process Technol, 2016, 152, 375- 380.
doi: 10.1016/j.fuproc.2016.06.037 |
17 | GE W Z , ZHAO T T , CHEN S , et al. The effect of adsorbed chromium on the pyrolysis behavior of brown coal and the recovery of chromium[J]. J Therm Anal Calorim, 2016, 128 (1): 513- 522. |
18 |
MAZZEI P , PICCOLO A . Interactions between natural organic matter and organic pollutants as revealed by NMR spectroscopy[J]. Magn Reson Chem, 2015, 53 (9): 667- 678.
doi: 10.1002/mrc.4209 |
19 | LI W , FENG X H , YAN Y P , et al. Solid-state NMR spectroscopic study of phosphate sorption mechanisms on aluminum (hydr)oxides[J]. Environ Sci Technol, 2013, 47 (15): 8308- 8315. |
20 |
MA H , QIAO Y , PEDERSEN C M , et al. The interaction between Fischer-Tropsch wastewater and humic acid: A NMR study of butanol isomers[J]. Fuel Process Technol, 2018, 179, 296- 301.
doi: 10.1016/j.fuproc.2018.07.019 |
21 |
ENGEBRETSON R R , VON WANDRUSZKA R . Micro-organization in dissolved humic acids[J]. Environ Sci Technol, 1994, 28 (11): 1934- 1941.
doi: 10.1021/es00060a026 |
22 |
PUCHALSKI M M , MORRA M J , VON WANDRUSZKA R . Fluorescence quenching of synthetic organic compounds by humic materials[J]. Environ Sci Technol, 1992, 26 (9): 1787- 1792.
doi: 10.1021/es00033a012 |
23 |
CHEN S , INSKEEP W P , WILLIAMS S A , et al. Fluorescence lifetime measurements of fluoranthene, 1-naphthol, and napropamide in the presence of dissolved humic acid[J]. Environ Sci Technol, 1994, 28 (9): 1582- 1588.
doi: 10.1021/es00058a008 |
24 |
HU J J , XU T W , CHENG Y Y . NMR insights into dendrimer-based host-guest systems[J]. Chem Rev, 2012, 112 (7): 3856- 3891.
doi: 10.1021/cr200333h |
25 | HUANG S S , YAO Y F , LI P , et al. Quantum chemical calculation and simulation of Liquid NMR HSQC experiment[J]. Chinese J Magn Reson, 2021, 35 (1): 32- 42. |
黄珊珊, 姚叶锋, 李鹏, 等. 液体核磁共振HSQC实验的量子化学计算与模拟[J]. 波谱学杂志, 2021, 38 (1): 32- 42. | |
26 | HU J J , CHENG Y Y , MA Y R , et al. Host-guest chemistry and physicochemical properties of the dendrimer-mycophenolic acid complex[J]. J Phys Chem B, 2009, 113 (1): 64- 74. |
27 |
SIMPSON M J , SIMPSON A J , HATCHER P G . Noncovalent interactions between aromatic compounds and dissolved humic acid examined by nuclear magnetic resonance spectroscopy[J]. Environ Toxicol Chem, 2004, 23 (2): 355.
doi: 10.1897/03-217 |
28 |
EGNER T K , NAIK P , NELSON N C , et al. Mechanistic insight into nanoparticle surface adsorption by solution NMR spectroscopy in an aqueous gel[J]. Angew Chem Int Edit, 2017, 56 (33): 9802- 9806.
doi: 10.1002/anie.201704471 |
29 | ZHANG F F , SHEN W B , XU K B , et al. A proton nuclear magnetic resonance method for quantitative analysis of ticagrelor[J]. Chinese J Magn Reson, 2020, 37 (2): 216- 223. |
张芬芬, 沈文斌, 徐开兵, 等. 定量核磁共振氢谱测定新药替格瑞洛[J]. 波谱学杂志, 2020, 37 (2): 216- 223. | |
30 |
CARPER W R , KELLER C E . Direct determination of NMR correlation times from spin-lattice and spin-spin relaxation times[J]. J Phys Chem A, 1997, 101 (18): 3246- 3250.
doi: 10.1021/jp963338h |
31 |
CARPER W R , NANTSIS E A . Direct-determination of 15N- and 19F-NMR correlation times from spin-lattice and spin-spin relaxation times[J]. J Phys Chem A, 1998, 102 (5): 812- 815.
doi: 10.1021/jp9720799 |
32 |
SIMPSON M J , SIMPSON A J , HATCHER P G . Noncovalent interactions between aromatic compounds and dissolved humic acid examined by nuclear magnetic resonance spectroscopy[J]. Environ Toxicol Chem, 2004, 23 (2): 355- 362.
doi: 10.1897/03-217 |
33 | CHEN X Y , YU J G , MAO S Z , et al. 1H NMR explores the influence of steric effect on the synergistic effect of surfactant compound system[J]. Chinese J Magn Reson, 2018, 35 (1): 75- 80. |
陈晓瑛, 俞刚金, 毛诗珍, 等. 1H NMR探究空间效应对表面活性剂复配体系中协同作用的影响[J]. 波谱学杂志, 2018, 35 (1): 75- 80. | |
34 | NING C F , MA M J , GUO Z H , et al. NMR study on the interaction between PAMAM dendrimer and 5-fluorouracil[J]. Chinese J Magn Reson, 2019, 36 (4): 555- 562. |
宁彩芳, 马敏珺, 郭朝晖, 等. PAMAM树状大分子与5-氟尿嘧啶相互作用的NMR研究[J]. 波谱学杂志, 2019, 36 (4): 555- 562. | |
35 |
LIU P , PEDERSEN C M , ZHANG J , et al. Ternary deep eutectic solvents catalyzed d-glucosamine self-condensation to deoxyfructosazine: NMR study[J]. Green Energy Environ, 2020,
doi: 10.1016/j.gee.2020.04.010 |
36 |
NANNY M A , BORTIATYNSKI J M , HATCHER P G . Noncovalent interactions between acenaphthenone and dissolved fulvic acid as determined by 13C NMR T1 relaxation measurements[J]. Environ Sci Technol, 1997, 31 (2): 530- 534.
doi: 10.1021/es960391a |
37 |
MAZZEI P , PICCOLO A . Quantitative evaluation of noncovalent interactions between glyphosate and dissolved humic substances by NMR spectroscopy[J]. Environ. Sci. Technol, 2012, 46 (11): 5939- 5946.
doi: 10.1021/es300265a |
38 | ŠMEJKALOVÁ D , PICCOLO A . Host-guest interactions between 2, 4-dichlorophenol and humic substances as evaluated by 1H NMR relaxation and diffusion ordered spectroscopy[J]. Environ Sci Technol, 2008, 42 (22): 8440- 8445. |
39 |
SMEJKALOVA D , SPACCINI R , FONTAINE B , et al. Binding of phenol and differently halogenated phenols to dissolved humic matter as measured by NMR spectroscopy[J]. Environ Sci Technol, 2009, 43 (14): 5377- 5382.
doi: 10.1021/es900559b |
40 | NANNY M A , LEENHEER J A , MINARD R A . Nuclear magnetic resonance spectroscopy in environment chemistry[M]. New York: Oxford University Press Inc., 1997. |
[1] | LI Yu-jiang, ZHAO Wei, GUO Xiao-he, TAO Le, ZHANG Xiang, ZHANG Hai-yan, ZHAO Tian-zeng. NMR Data Analysis of Manidipine Hydrochloride [J]. Chinese Journal of Magnetic Resonance, 2021, 38(1): 110-117. |
[2] | WANG Si-hong, ZHANG Jing-dong, YIN Xiu-mei, LI Dong-hao, KAN Yu-he, HU Wei. NMR Assignments of 6-(4-chlorophenoxy)-tetrazolo[5,1-a]phthalazine [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 390-398. |
[3] | NING Cai-fang, MA Min-jun, GUO Zhao-hui, ZHANG Shu-huai, QIAO Yan, WANG Ying-xiong. Interactions Between 5-Fluorouracil and PAMAM Dendrimers Studies by NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2019, 36(4): 555-562. |
[4] | LIU Wen-qing, SONG Yan-hong, WANG Xue-lu, YAO Ye-feng. In Operando Nuclear Magnetic Resonance Spectroscopy Study on Photocatalytic Methanol Reforming [J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 298-308. |
[5] | CHEN Xiao-ying, YU Gang-jin, MAO Shi-zhen, LIU Mai-li, DU You-ru. Mixing-Induced Decreases in Critical Micelle Concentration in Aqueous Solution of Surfactants:Probing into the Mechanisms with 1H NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 219-224. |
[6] | LI Hong-wei, YUAN Zhi-liang, XIA Bin. Determination of Apparent Protein Molecular Weight in Solution by Diffusion Ordered NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2018, 35(3): 280-286. |
[7] | HUANG Jun-lin, YU Yi-hua. Effects of Digital Resolution on Diffusional Dimension in DOSY Experiments [J]. Chinese Journal of Magnetic Resonance, 2018, 35(3): 287-293. |
[8] | GUO Hai-qing, XIN Jia-xiang, LIU Hui-xia, WEI Da-xiu, YAO Ye-feng. Preparation of Long-Lived Nuclear Singlet States in Three-Spin Systems [J]. Chinese Journal of Magnetic Resonance, 2018, 35(3): 345-352. |
[9] | ZHOU Zhong-gao, YUAN Yang-yang, LIU Hong-bo, QI Qi, XIE Yong-rong. An NMR Study on Prucalopride [J]. Chinese Journal of Magnetic Resonance, 2018, 35(1): 119-127. |
[10] | SUN Wei, SHE Meng-yao, ZONG Chun-lei, GAO Xiang, GUO Juan. An NMR Study on Diacetonefructose [J]. Chinese Journal of Magnetic Resonance, 2017, 34(3): 329-337. |
[11] | ZHAI Zi-ning, WU Qiong, LI Cong-gang. Lysine Acetylation Inhibits α-Synuclein Fibrillation [J]. Chinese Journal of Magnetic Resonance, 2016, 33(2): 179-187. |
[12] | LIU De-yun, WANG Ya-ru, WEI Hai-feng, XIA Gao-feng, YANG Xiao-yun. Spectral Analysis of Fungicide Cyflufenamid [J]. Chinese Journal of Magnetic Resonance, 2016, 33(1): 142-152. |
[13] | PANG Zi-bo*, MENG Da-lei, DOU Ying, MA Si-rui, WU Cong,CHENG Hong-juan, XU Yong-kuan. Characterization of Molecular Structure of DAST Using Nuclear Magnetic Resonance Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2015, 32(4): 637-647. |
[14] | DAI Chen-ye1,2,LIU Mai-li1,LI Cong-gang1. Salt Content-Dependent Conformational Changes of α-Synuclein Studied by 19F NMR [J]. Chinese Journal of Magnetic Resonance, 2015, 32(1): 33-40. |
[15] | MA Da-Yan, WANG Xi-Ming, ZHANG Ming-Hui. Mechanism of Water Sorption during Adsorption Process of Wood Studied by NMR [J]. Chinese Journal of Magnetic Resonance, 2011, 28(1): 135-141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||