[1] 邢义国. SN地区核磁共振测井实验数据的地质应用研究[D]. 大庆:东北石油大学, 2017. [2] LIU Y M, LIANG C. NMR core analysis in complex lithologic reservoirs[J]. Journal of Oil and Gas Technology, 2014, 36(6):75-78. 刘玉明, 梁灿. 复杂岩性储层核磁共振测井岩心分析[J]. 石油天然气学报, 2014, 36(6):75-78. [3] GE X M, FAN Y R, CAO Y C, et al. Reservoir pore structure classification technology of carbonate rock based on NMR T2 spectrum decomposition[J]. Appl Magn Reson, 2014, 45(2):155-167. [4] GE X M, LIU J Y, FAN Y R, et al. Laboratory investigation into the formation and dissociation process of gas hydrate by low-field NMR technique[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(5):3339-3346. [5] HOU K J, WU J M, GE X, et al. Porosity computational method based on 2D NMR relaxation spectra of Leikoupo Group's 4th section in western Chuanxi[J]. Chinese J Magn Reson, 2020, 37(2):162-171. 侯克均, 吴见萌, 葛祥, 等. 基于二维核磁共振弛豫谱的川西雷四段孔隙度计算方法[J].波谱学杂志, 2020, 37(2):162-171. [6] MAO R, XU L, FANG T, et al. Application of NMR technology in evaluation of low-permeability conglomerate reservoirs:a case study from the lower triassic baikouquan formation in Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1):114-118. 毛锐, 许琳, 房涛, 等. 核磁共振测井在低渗砾岩储集层评价中的应用-以玛湖凹陷下三叠统百口泉组为例[J]. 新疆石油地质, 2018, 39(1):114-118. [7] LUO X P, SU D X, WANG Z L, et al. Application of NMR logging in low-resistivity reservoir evaluation:A case study of toutunhe formation on the eastern fukang slope, junggar basin[J]. Xinjiang Petroleum Geology, 2017, 38(4):470-476. 罗兴平, 苏东旭, 王振林, 等. 核磁共振测井在低阻油层评价中的应用-以准噶尔盆地阜东斜坡头屯河组为例[J]. 新疆石油地质, 2017, 38(4):470-476. [8] WANG Z L, MAO Z Q, SUN Z C, et al. Evaluation of pore structure using NMR logs for tight oil reservoirs[J]. Fault-Block Oil & Gas Field, 2017, 24(6):783-787. 王振林, 毛志强, 孙中春, 等. 致密油储层孔隙结构核磁共振测井评价方法[J]. 断块油气田, 2017, 24(6):783-787. [9] LIANG X, MAO Z Q, ZOU C C, et al. A new methodology of constructing pseudo capillary pressure (Pc) curves from nuclear magnetic resonance (NMR) logs[J]. J Petrol Sci Eng, 2016, 147:154-167. [10] XIAO L, ZOU C C, MAO Z Q, et al. A new technique for synthetizing capillary pressure (pc) curves using NMR logs in tight gas sandstone reservoirs[J]. J Petrol Sci Eng, 2016, 145:493-501. [11] ZHANG S M, ZHANG S N, GE X, et al. Optimal design and application of two-dimensional NMR logging in Chuanxi tight gas reservoir[J]. Chinese J Magn Reson, 2018, 35(2):234-242. 张世懋, 张哨楠, 葛祥, 等. 川西致密气藏二维核磁共振测井优化设计与应用[J]. 波谱学杂志, 2018, 35(2):234-242. [12] SHE G, XU Y F, LI S Y, et al. Application of 2D NMR logging on complex reservoir fluid identification in Qaidam basin[J]. Progress in Geophysics, 2018, 33(4):1566-1572. 佘刚, 徐永发, 李世毅, 等. 二维核磁共振测井在柴达木盆地复杂储层流体识别中的应用[J]. 地球物理学进展, 2018, 33(4):1566-1572. [13] 朱林奇. 核磁共振测井评价致密砂岩储层孔隙结构与渗透率方法研究[D]. 荆州:长江大学, 2014. [14] ZHU L Q, ZHANG C, HE X J, et al. Permeability prediction of tight sandstone reservoir based on improved BPNN and T2 full-spectrum[J]. Geophysical Prospecting For Petroleum, 2017, 56(5):727-734. 朱林奇, 张冲, 何小菊, 等. 基于改进BPNN与T2全谱的致密砂岩储层渗透率预测[J]. 石油物探, 2017, 56(5):727-734. [15] CHENG J J. Applicaion of NMR log data to productivity evaluation of tight sandstone gas reservoirs[J]. Offshore Oil, 2017, 37(4):57-62. 成家杰. 核磁测井资料在致密砂岩储层产能评价中的应用[J]. 海洋石油, 2017, 37(4):57-62. [16] LIU Z J, YANG D, SHAO J X, et al. Evolution of pore connectivity in Fushun oil shale based on low-field nuclear magnetic resonance[J]. Chinese J Magn Reson, 2019, 36(3):309-318.刘志军, 杨栋, 邵继喜, 等. 基于低场核磁共振的抚顺油页岩孔隙连通性演化研究[J]. 波谱学杂志, 2019, 36(3):309-318. [17] LIANG X, WANG S, ZHOU M S, et al. Coal seam porosity evaluation based on nuclear magnetic experiment and resistivity log[J]. Coal Engineering, 2017, 49(8):130-133. 梁霄, 汪姗, 周明顺, 等. 基于核磁共振与电阻率测井的煤储层孔隙性评价[J]. 煤炭工程, 2017, 49(8):130-133. [18] 陆大卫. 核磁共振测井理论与应用[M]. 北京:石油工业出版社, 1998. [19] ZHANG X W, GUO H K, SHEN R, et al. Microscopic experimental study on water displacement oil based on nuclear magnetic resonance technology[J]. Research And Exploration Laboratory, 2017, 36(9):17-21. 张新旺, 郭和坤, 沈瑞, 等. 基于核磁共振技术水驱油剩余油分布评价[J]. 实验室研究与探索, 2017, 36(9):17-21. [20] COATES G R, XIAO L Z, PRAMMER M G. NMR logging principles and applications[M]. Halliburton:Halliburton Energy Services Publication H02308, 1999. [21] ZHU X J, ZHANG X M, FAN Y R, et al. Research on the effectiveness analysis and storage evaluation of the melaphyre reservoir[J]. Geophysical & Geochemical Exploration, 2013, 37(3):400-405. 朱学娟, 张向明, 范宜仁, 等. 蚀变玄武岩储层的有效性分析及储集性能评价[J]. 物探与化探, 2013, 37(3):400-405. [22] ZHANG C J, FAN T L, MENG M M, et al. Geological interpretation of ordovician carbonate reservoir in Tahe oilfield:application of imaging logging technology[J]. Xinjiang Petroleum Geology, 2018, 39(3):352-359. 张宸嘉, 樊太亮, 孟苗苗, 等. 塔河油田奥陶系碳酸盐岩储集层成像测井地质解释[J]. 新疆石油地质, 2018, 39(3):352-359. [23] MENG F Y, XIAO L Z, WU Y Q, et al. Basic experiment of NMR logging application in ultra-low porosity/low permeability reservoirs in tabe area of Xinjiang[J]. Journal of Jianghan Petroleum Institute, 2003, 25(3):61-62. 孟繁莹, 肖立志, 仵岳奇, 等. 新疆塔河特低孔低渗油气藏核磁共振测井应用基础实验[J]. 江汉石油学院学报, 2003, 25(3):61-62. [24] FAN Y R, LIU J Y, GE X M, et al. Permeability evaluation of tight sandstone based on dual T2 cutoff values measured by NMR[J]. Chinese Journal of Geophysics, 2018, 61(4):1628-1637. 范宜仁, 刘建宇, 葛新民, 等. 基于核磁共振双截止值的致密砂岩渗透率评价新方法[J]. 地球物理学报, 2018, 61(4):1628-1637. |