波谱学杂志 ›› 2009, Vol. 26 ›› Issue (4): 437-456.
• 研究论文 • 下一篇
收稿日期:
2009-08-03
出版日期:
2009-12-05
发布日期:
2009-12-05
Received:
2009-08-03
Online:
2009-12-05
Published:
2009-12-05
摘要:
有序样品的固体核磁共振(NMR)已快速发展成测定蛋白质和多肽在“仿真”水化磷脂层中高分辨结构的重要谱学方法. 由于与膜相连的蛋白质和多肽的结构、动力学和功能往往都和其周边自然环境密切相关,因此人们把蛋白质和多肽有序排列于水化磷脂层中进行固体NMR测量, 从而获得与取向相关的各向异性自旋相互作用. 这些取向约束可作为结构参数重构蛋白质在水化磷脂层中的高分辨三维结构. 近十年来在样品制备,NMR探头和实验方法方面的显著发展,极大地促进了有序样品的固体NMR的发展,并使之成为测定与膜相连的蛋白质和多肽结构的有效方法. 该综述介绍有序样品的固体NMR谱学方法,并总结此领域里的最新研究进展.
中图分类号:
傅日强. 水化磷脂层中蛋白质和多肽的高分辨固体核磁共振波谱学[J]. 波谱学杂志, 2009, 26(4): 437-456.
FU Ri-Qiang. High-Resolution Solid-State NMR Spectroscopy of Membrane Bound Proteins and Peptides Aligned in Hydrated Lipids[J]. Chinese Journal of Magnetic Resonance, 2009, 26(4): 437-456.
[1] Duong Ly K C, Nanda V, Degrado W F, et al. The conformation of the pore region of the M2 proton channel depends on lipid bilayer Environment[J]. Protein Sci, 2005, 14: 856-861.[2] Fu R, Brey W W, Cross T A. Aligned membrane oroteins: Structural studies[J]. Encyclopedia of NMR, in press. [3] Page R, Li C, Hu J, et al. Lipid bilayers: An essential environment for the understanding of membrane proteins[J]. Magn Reson Chem, 2007, 45: S2-S11.[4] Fraser C M, Gocayne J D, White O, et al. The Minimum gene complement of mycoplasma genitalium[J]. Science, 1995, 270: 397-403.[5] Patrzykat A, Douglas S. Antimicrobial peptides: cooperative approaches to protection[J]. Protein Pept Lett, 2005, 12: 19-25.[6] Brogden K A. Antimicrobial peptides: Pore formers of metabolic inhibitors in bacteria?[J]. Nat Rev Microbiol, 2005, 3: 238-250.[7] Campagna S, Saint N, Molle G, et al. Structure and mechanism of action of the antimicrobial peptide piscidin[J]. Biochem, 2007, 46: 1 771-1 778.[8] Yeaman M, Yount N. Unifying themes in host defence effector polypeptides [J]. Nat Rev Microbiol, 2007, 5: 727-740.[9] Doyle D A, Cabral J M, Pfuetzner R A, et al. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity[J]. Science, 1998, 280: 69-77.[10] Jian Y, Lee A, Chen J, et al. Crystal structure and mechanism of a calcium-gated potassium channel[J]. Nature, 2002, 417: 515-522.[11] Kukol A, Adams P D, Rice L M, et al. Experimentally based orientational refinement of membrane protein models: A structure for the influenza A M2 H+ channel[J]. J Mol Biol, 1999, 286: 951-962.[12] Manor J, Mukherjee P, Lin Y S, et al. Gating mechanism of the influenza A M2 channel revealed by 1D and 2D IR spectroscopies[J]. Structure, 2009, 17: 247-254.[13] Fernandez C, Hilty C, Wider G, et al. NMR structure of the integral membrane protein OmpX[J]. J Mol Biol, 2004, 336: 1 211-1 221.[14] Traaseth N J, Verardi R, Torgersen K D, et al. Spectroscopic validation of the pentameric structure of phospholamban[J]. Proc Nat Acad Sci USA, 2007, 104: 14 676-14 681.[15] Fu R, Cross T A. Solid-state NMR investigation of protein and polypeptide structure[J]. Annu Rev Biophys Biomol Struct, 1999, 28: 235-268.[16] Marassi F M, Opella S J. NMR structural studies of membrane proteins[J]. Curr Opin Struct Biol, 1998, 8: 640-648.[17] Opella S J, Marassi F M. Structure determination of membrane proteins by NMR spectroscopy[J]. Chem Rev, 2004, 104: 3 587-3 606.[18] Opella S J, Zeri A C, Park S H. Structure, dynamics, and assembly of filamentous bacteriophages by nuclear magnetic resonance spectroscopy[J]. Annu Rev Phys Chem, 2008, 59: 635-657.[19] Vosegaard T, Nielsen N C. Towards high-resolution solid-state NMR on large uniformly 15N and [13C, 15N] labeled membrane proteins in oriented lipid bilayers[J]. J Biomol NMR, 2002, 22: 225-247.[20] Ramamoorthy A, Wei Y, Lee D K. PISEMA solid-state NMR spectroscopy[J]. Annu Reports on NMR Spectroscopy, 2004, 52: 1-52.[21] Opella S J. NMR and membrane proteins[J]. Nat Struct Biol, 1997,4 NMR Supplements: 845-848.[22] Ketchem R, Hu W, Cross T A. High-resolution conformation of gramicidin A in a lipid bilayer by solid state NMR[J]. Science, 1993, 261: 1 457-1 460.[23] Ketchem R R, Roux B, Cross T A. High-resolution polypeptide structure in a lameller phase lipid environment from solid state NMR derived orientational constraints[J]. Structure, 1997, 5: 1 655-1 669.[24] Valentine K G, Liu S F, Marassi F M, et al. Structure and topology of a peptide segment of the 6th transmembrane domain of the saccharomyces cerevisiae alpha-factor receptor in phospholipid bilayers[J]. Biopolymers, 2001, 59: 243-256.[25] Opella S J, Marassi F M, Gesell J J, et al. Structures of M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy[J]. Nat Struct Biol, 1999, 6: 374-379.[26] Tian C, Gao F P, Pinto L H, et al. Initial structural and dynamic characterization of the M2 protein transmembrane and amphipathic helices in lipid bilayers[J]. Protein Sci, 2003, 12: 2 597-2 605.[27] Nishimura K, Kim S, Zhang L, et al. The closed state of a H+ Channel helical bundle combining precise orientational and distance restraints from solid state NMR[J]. Biochem., 2002, 41: 13 170-13 177.[28] Hu J, Qin H, Li C, et al. Structural biology of transmembrane domains: Effieicient production and characterization of transmembrane peptides by NMR[J]. Protein Sci, 2007, 16: 2 153-2 165.[29] Marassi F M, Opella S J. Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints[J]. Protein Sci, 2003, 12: 403-411.[30] DeAngelis A A, Howell S C, Nevzorov A A, et al. Structure determination of a membrane protein with two transmembrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy[J]. J Am Chem Soc, 2006, 128: 12 256-12 257.[31] Park S H, de Angelis A A, Nevzorov A A, et al. Three-dimensional structure of the transmembrane domain of Vpu from HIV-1 in aligned phospholipid bicelles[J]. Biophys J, 2006, 91: 3 032-3 042.[32] Gamblin S J, Haire L F, Russell R J, et al. The structure and receptor binding properties of the 1918 influenza hemagglutinin[J]. Science, 2004, 203: 1838-1842.[33] Fu R, Smith S A, Bodenhausen G. Recoupling of heteronuclear dipolar interactions in solid state magic-angle spinning NMR by simultaneous frequency and amplitude modulation[J]. Chem Phys Lett, 1997, 272: 361-369.[34] Fu R, Cotten M, Cross T A. Inter- and intramolecular distance measurements by solid state magic angle spinning NMR: Determination of gramicidin A channel dimer structure in hydrated phospholipid bilayers[J]. J Biomol NMR, 2000, 16: 261-268.[35] Cotten M, Fu R, Cross T A. Solid state NMR and hydrogen-deuterium exchange in a bilayer solubilized peptide: Structural and mechanistic implications[J]. Biophys J, 1999, 76: 1 179-1 189.[36] Luo W, Mani R, Hong M. Side-chain conformation of the M2 transmembrane peptide proton channel of influenza A virus from 19F solidstate NMR[J]. J Phys Chem B, 2007, 111: 10 825-10 832.[37] Witter R, Nozirov F, Sternberg U, et al. Solid-state 19F NMR spectroscopy reveals that Trp41 participates in the gating mechanism of the M2 protein channel of influenza A virus[J]. J Am Chem Soc, 2008, 130: 918-924.[38] Cady S D, Mishanina T V, Hong M. Structure of amantadine-bound M2 transmembrane peptide of influenza A in lipid bilayers from magic-angle-spinning solid-state NMR: The role of Ser31 in amantadine binding[J]. J Mol Biol, 2009, 385: 1 127-1 141.[39] Hu J, Fu R, Nishimura K, et al. Histidines: Heart of the H+ channel from influenza A virus[J]. Proc Nat Acad Sci USA, 2006, 103: 6 865-6 870.[40] Cross T A, Opella S J. Protein structure by solid-state NMR[J]. J Am Chem Soc, 1983, 105: 306-308.[41] Yamaguchi S, Huster D, Waring A, et al. Orientation and dynamics of an antimicrobial peptide in the lipid bilayer by solid-state NMR spectroscopy[J]. Biophys J, 2001, 81: 2 203-2 214.[42] de Angelis A A, Jones D H, Grant C V, et al. NMR experiments on aligned samples of membrane proteins[J]. Methods Enzymol, 2005, 394: 350-382.[43]Li C, Gao F P, Qin H, et al. Uniformly aligned full-length membrane proteins in lipid-crystalline bilayers for structural characterization[J]. J Am Chem Soc, 2007, 129: 4 335-4 343.[44] Hu J, Asbury T, Achuthan S, et al. Backbone structure of the amantadine-blocked transmembrane domain M2 proton channel from influenza A virus[J]. Biophys J, 2007, 92: 4 335-4 343.[45] Kamihira M, Vosegaard T, Mason A J, et al. Structural and orientational constraints of bacteriorhodopsin in purple membranes determined by oriented-sample solid-state NMR spectroscopy[J]. J Struc Biol, 2005, 149: 7-16.[46] Dvinskikh S V, Durr U, Yamamoto K, et al. A high-resolution solid state NMR approach for the structural studies of bicelles[J]. J Am Chem Soc, 2006, 128: 6 326-6 327.[47] Chekmenev E Y, Gor’kov P L, Cross T A, et al. Flowthrough lipid nanotube arrays for structure-function studies of membrane proteins by solid-state NMR spectroscopy[J]. Biophys J, 2006, 91: 3 076-3 084.[48] DeAngelis A A, Nevzorov A A, Park S H, et al. High-resolution NMR spectroscopy of membrane proteins in “Unflipped” bicelles[J]. J Am Chem Soc, 2004, 126: 15 340-15 341.[49] Prosser R S, Evanics F, Kitevski J L, et al. Current applications of bicelles in NMR studies of membrane-associated amphiphiles and proteins[J]. Biochem, 2006, 18: 8 453-8 465.[50] de Angelis A A, Opella S J. Bicelle samples for solid-state NMR of membrane proteins[J]. Nat Protoc, 2007, 2: 2 332-2 338.[51] Franzin C M, Teriete P, Marassi F M. Structural similarity of a membrane protein in micelles and membranes[J]. J Am Chem Soc, 2007, 129: 8 078-8 079.[52] Luo W, Cady S D, Hong M. Immobilization of the influenza A M2 transmembrane peptide in virus envelope-mimetic lipid membranes: A solid-state NMR investigation[J]. Biochem, 2009, 48: 6 361-6 368.[53] Chekmenev E Y, Jones S M, Nikolayeva Y N, et al. High-field NMR studies of molecular recognition and structure-function relationships in antimicrobial piscidins at the water-lipid bilayer interface[J]. J Am Chem Soc, 2006, 128: 5 308-5 309.[54] Fu R, Gordon E D, Hibbard D J, et al. High resolution heteronuclear correlation NMR spectroscopy of an antimicrobial peptide in aligned lipids bilayers: Peptidewater interactions at the water-bilayer interface[J]. J Am Chem Soc, 2009, 131: 10 830-10 831.[55] Oldfield E, Rothgeb T M. NMR of individual sites in protein crystals. Magnetic Ordering Effects[J]. J Am Chem Soc, 1980, 102: 3 635-3 637.[56] Cotten M, Soghomonian V G, Hu W, et al. High resolution and high fields in biological solid-state NMR[J]. Solid State Nucl Magn Reson, 1997, 9: 77-80.[57] Sanders C R, Landis G C. Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies[J]. Biochem, 1995, 34: 4 030-4 040.[58] Cross V R, Hester R K, Waugh J S. Single coil probe with transmission-line tuning for nuclear magnetic double resonance\[J\]. Rev Sci Instr, 1976, 47: 1 486-1 488.[59] Kim Y W, Earl W I, Norberg R E. Cryogenic probe with low-loss transmission-line for nuclear magnetic resonance[J]. J Magn, Reson A, 1995, 116: 139-144.[60] Li C, Mo Y, Hu J, et al. Analysis of RF heating and sample stability in aligned static solid state NMR spectroscopy[J]. J Magn Reson, 2006, 180: 51-57.[61] Paulson E K, Martin R K, Zilm K W. Cross polarization and radio frequency field homogeneity and circuit balancing in high field solid state NMR probes[J]. J Magn Reson, 2004, 171: 314-323.[62] Gor’kov P L, Chekmenev E Y, Fu R, et al. A large volume flat coil probe for oriented membrane proteins[J]. J Magn Reson, 2006, 181: 9-20.[63] Stringer J A, Bronnimann C E, Mullen C G, et al. Reduction of RF-induced sample heating with a scroll coil resonator structure for solidstate NMR probes[J]. J Magn Reson, 2005, 173: 40-48.[64] Grant C V, Sit S L, de Angelis A A, et al. An efficient 1H/31P double-resonance solid-state NMR probe that utilizes a scroll coil[J]. J Magn Reson, 2007, 188: 279-284.[65] Krahn A, Priller U, Emsley L, et al. Resonator with reduced sample heating and increased homogeneity for solid-state NMR[J]. J Magn Reson, 2008, 191: 78-92.[66] Doty F D, Kulkami J, Turner C, et al. Using a cross-coil to reduce RF heating by an order of magnitude in triple resonance multinuclear MAS at high fields[J]. J Magn Reson, 2006, 182: 239-253.[67] Gor’kov P L, Chekmenev E Y, Li C, et al. Using low-E resonators to reduce RF heating in biological samples for static solid-state NMR up to 900 MHz[J]. J Magn Reson, 2007, 185: 77-93.[68] Waugh J S. Uncoupling of local field spectra in nuclear magnetic resonance: Determination of atomic positions in solids\[J\]. Proc Nat Acad Sci USA, 1976, 73: 1 394-1 397.[69] Asbury T, Quine J R, Achuthan S, et al. PIPATH: An optimized algorithm for generating α-Helical structure from PISEMA data[J]. J Magn Reson, 2006, 183: 300-309.[70] Wu C H, Ramamoorthy A, Opella S J. High-resolution heteronuclear dipolar solid-state NMR spectroscopy[J]. J Magn Reson Ser A, 1994, 109: 270-272.[71] Bielecki A, Kolbert A C, de Groot H J M, et al. Frequency-switched lee-goldburg sequences in solids[J]. Advan Magn Reson, 1990, 14: 111-150.[72] Gan Z. Spin dynamics of polarization inversion spin exchange at the magic angle in multiple spin systems[J]. J Magn Reson, 2000, 143: 136-143.[73] Waugh J S, Huber L M, Haeberlen U. Approach to high-resolution NMR in solids[J]. Phys Rev Lett, 1968, 20: 180.[74]Rhim W K, Pines A, Waugh J S. Time-reversal experiments in dipolar-coupled spin systems[J]. Phys Rev B, 1971, 3: 684.[75] Burum D P, Linder M, Ernst R R. Low-power multipulse line narrowing in solid-state NMR[J]. J Magn Reson, 1981, 44: 173-188.[76] Marassi F M, Opella S J. A solid-state NMR index of helical membrane proteins structure and topology[J]. J Magn Reson, 2000, 144: 150-155.[77] Wang J, Denny J, Tian C, et al. Imaging membrane protein helical wheels[J]. J Magn Reson, 2000, 144: 162-167.[78] Fu R, Tian C, Kim H, et al. The effect of Hartmann-Hahn mismatching on polarization inversion spin exchange at the magic angle[J]. J Magn Reson, 2002, 159: 167-174.[79] Yamamoto K, Lee D K, Ramamoorthy A. Broadband-PISEMA solid state NMR spectroscopy[J]. Chem Phys Lett, 2005, 407: 289-293.[80] Dvinskikh S V, Sandstrom D. Frequency offset refocused PISEMA-type sequences[J]. J Magn Reson, 2005, 175: 163-169.[81] Nevzorov A A, Opella S J. A “Magic Sandwich” pulse sequence with reduced offset dependence for high-resolution separated local field spectroscopy[J]. J Magn Reson, 2003, 164: 182-186.[82] Dvinskikh S V, Yamamoto K, Ramamoorthy A. Heteronuclear isotropic mixing separated local field NMR spectroscopy[J]. J Chem Phys, 2006, 125: 034507.[83] Dvinskikh S V, Yamamoto K, Ramamoorthy A. Separated local field NMR spectroscopy by windowless isotropic mixing[J]. Chem Phys Lett, 2006, 419: 168-173.[84] Yamamoto K, Dvinskikh S V, Ramamoorthy A. Measurement of heteronuclear dipolar couplings using a rotating frame solid-state NMR experiment[J]. Chem Phys Lett, 2006, 419: 533-536.[85]Nevzorov A A, Opella S J. Selective averaging for high-resolution solid-state NMR spectroscopy of aligned samples[J]. J Magn Reson, 2007, 185: 59-70.[86] Ozdirekcan S, Rijkers D T, Liskamp R M, et al. Influence of flanking residues on tilt and rotation angles of transmembrane peptides in lipid bilayers. A solid-state 2H NMR study\[J]. Biochem, 2005, 44: 1 004-1 012.[87] Sinha N, Filipp F V, Jairam L, et al. Tailoring C-13 labeling for triple-resonance solid-state NMR experiments on aligned samples of proteins[J]. Magn Reson Chem, 2007, 45: S107-S115.[88] Wu C H, Opella S J. Shiftless nuclear magnetic resonance spectroscopy[J]. J Chem Phys, 2008, 128: 052312.[89] Mesleh M F, Veglia G, DeSilva T M, et al. Dipolar waves as NMR maps of protein structure[J]. J Am Chem Soc, 2002, 124: 4 206-4 207.[90] Fu R M T, Saager R J, et al. High-resolution heteronuclear correlation spectroscopy in solid state NMR of aligned samples[J]. J Mag Reson, 2007, 188: 41-48.[91] Wu C H, Ramamoorthy A, Gierasch L M, et al. Simultaneous characterization of the amide 1H chemical shift, 1H-15N dipolar, and 15N chemical shift interaction tensors in a peptide bond by three-dimensional solid-state NMR spectroscopy[J]. J Am Chem Soc, 1995, 117: 6 148-6 149.[92] Ramamoorthy A, Wu C H, Opella S J. Three-dimensional solid-state NMR experiment that correlates the chemical shift and dipolar coupling frequencies of two heteronuclei[J]. J Magn Reson Ser B, 1995, 107: 88-90.[93] Jelinek R, Ramamoorthy A, Opella S J. High-resolution three-dimensional solid-state NMR spectroscopy of a uniformly 15Nlabeled protein[J]. J Am Chem Soc, 1995, 117: 12 348-12 349.[94] Hohwy M, Nielsen N C. Elimination of high order terms in multiple pulse nuclear magnetic resonanc spectroscopy: Application to homonuclear decoupling in solids[J]. J Chem Phys, 1997, 106: 7 571-7 586.[95] Caravatti P, Braunschweiler L, Ernst R R. Heteronuclear correlation spectroscopy in rotating solids[J]. Chem Phys Letts, 1983, 100: 305-310.[96] Silphaduang U, Noga E J. Peptide Antibiotics in Mast Cells of Fish[J]. Nature, 2001, 414: 268-269.[97] Lauth X, Shike H, Burns J C, et al. Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass[J]. J Biol Chem, 2002, 277: 5 030-5 039.[98] Ottiger M, Delaglio F, Bax A. Measurement of J and dipolar coupling from simplified two-dimensional NMR spectra[J]. J Mag Reson, 1998, 131: 373-378.[99] Wei Y, Lee D K, Hallock K J, et al. One-dimensional 1H-detected solid state NMR experiment to determine amide 1H chemical shifts in peptides[J]. Chem Phys Lett, 2002, 351: 42-46.[100] Gopinath T, Veglia G. Sensitivity enhancement in static solid-state NMR experiments via single- and multiple-quantum dipolar coherences[J]. J Am Chem Soc, 2009, 131: 5 754-5 756.[101] Wu C H, Opella S J. Proton-detected separated local field spectroscopy[J]. J Mag Reson, 2008, 190: 165-170.[102] Sinha N, Grant C V, Wu C H, et al. SPINAL modulated decoupling in high field double- and triple-resonance solid-state NMR experiments on stationary samples[J]. J Magn Reson, 2005, 177: 197-202.[103] Qian C, Fu R, Gor’kov P L, et al. 14N polarization inversion spin exchange at magic angle (PISEMA)[J]. J Magn Reson, 2009, 196: 96-99.[104] Suter D, Ernst R R. Spin diffusion in resolved solid-state NMR spectra[J]. Phys Rev B, 1985, 32: 5 608-5 627.[105] Cross T A, Frey M H, Opella S J. 15N spin exchange in a protein[J]. J Am Chem Soc, 1983, 105: 7 471-7 473.[106] Xu J, Struppe J, Ramamoorthy A. Two-dimensional homonuclear chemical shift correlation established by the cross-relaxation driven spin diffusion in solids[J]. J Chem Phys, 2008, 128: 052308.[107] Nevzorov A A. Mismatched hartmann-hahn conditions cause proton-mediated intermolecular magnetization transfer between dilute lowspin nuclei in NMR of static solids[J]. J Am Chem Soc, 2008, 130: 11 282-11 283. |
[1] | 徐小俊, 王申林. 19F固体核磁共振技术研究膜蛋白相互作用的进展[J]. 波谱学杂志, 2019, 36(2): 238-251. |
[2] | 吴金泽, 辛家祥, 付晓彬, 姚叶锋. 通过宽线固体核磁共振氢谱研究半晶高分子的相结构[J]. 波谱学杂志, 2019, 36(1): 23-33. |
[3] | 葛玉玮, 刘买利, 甘哲宏, 李从刚. 质子化学位移各向异性的测量[J]. 波谱学杂志, 2018, 35(2): 255-267. |
[4] | 姜婷婷, 付晓彬, 吴金泽, 王嘉琛, 姚叶锋, 周兵. Li1.5Al0.5Ge1.5P3O12/高分子固体电解质表界面结构与分子运动的固体NMR研究[J]. 波谱学杂志, 2017, 34(4): 429-438. |
[5] | 孙毅, 陈艳可, 李建平, 赵永祥, 杨俊. 固体核磁共振中膜蛋白双交叉极化效率与动力学参数相关的定量分析[J]. 波谱学杂志, 2017, 34(3): 257-265. |
[6] | 李东北, 许帅, 喻志武. 固体核磁共振技术在骨基生物材料研究中的应用[J]. 波谱学杂志, 2017, 34(1): 115-129. |
[7] | 闫晓静, 胡炳文. SHA+脉冲序列用于g-C3N4样品15N-15N相关性的[J]. 波谱学杂志, 2016, 33(3): 361-367. |
[8] | 彭永进, 孙平川, 李宝会. PVPh/PEO共混物动力学演化过程的NMR研究[J]. 波谱学杂志, 2016, 33(2): 188-197. |
[9] | 韩明月,郑慧,胡炳文*,杨光*. 迭代软阈值法压缩感知重建谱峰较宽的二维固体谱 [J]. 波谱学杂志, 2015, 32(4): 551-562. |
[10] | 徐玮婧,刘清华,胡炳文*,陈群. 聚氧乙烯-六氟砷酸锂复合物不同结晶结构的13C谱归属[J]. 波谱学杂志, 2015, 32(3): 399-408. |
[11] | 丁丽红1,2,刘小龙2,王强2,刘文涛1,朱诚身1,郑安民2,邓风2*. 多金属氧酸盐TBA3[VW5O19]及TBA4[PVW11O40]的固体核磁共振研究[J]. 波谱学杂志, 2015, 32(3): 409-418. |
[12] | 肖婷,姚叶锋*. 半晶聚乙烯局部和整体分子链运动的固体核磁共振研究[J]. 波谱学杂志, 2015, 32(2): 208-227. |
[13] | 郁桂云1,彭路明2*. 固体核磁共振谱学研究层状双氢氧化物[J]. 波谱学杂志, 2015, 32(2): 228-247. |
[14] | 胡蕴菲1,2,何鹏1,3,吴宇杰1,3,金长文1,2,3,4*. 枯草芽孢杆菌双精氨酸转运系统TatAy 蛋白的溶液结构[J]. 波谱学杂志, 2015, 32(2): 291-307. |
[15] | 王粉粉 1,陈铁红1,孙平川1,2,3*. 先进固体核磁共振揭示苯硼酸-壳聚糖纳米粒子非均匀结构和相容性[J]. 波谱学杂志, 2015, 32(2): 354-362. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||