• 特邀论文 • 下一篇
SUTRISNO Andre, 黄忆宁*
收稿日期:
2013-02-11
修回日期:
2013-11-02
出版日期:
2013-12-05
发布日期:
2013-12-05
作者简介:
黄忆宁,出生于北京. 在北京大学化学系获学士与硕士学位.1992年在加拿大麦吉尔大学(McGill University)获博士学位.其后在加拿大英属哥伦比亚大学(University of British Columbia)从事博士后研究.现任加拿大西安大略大学(The University of Western Ontario)终身教授,中国科学院大连化学物理研究所高级伙伴研究员,北京大学化学与分子工程学院客座教授,加拿大化学会志(Canadian Journal of Chemistry)主编. 曾任加拿大超高场固体核磁共振国家实验室指导委员会委员(2006~2010年),加拿大国家级讲座教授(Canada Research Chair,2002~2012年). 主要研究方向为用固体核磁共振和震动光谱的方法研究多孔材料与层状化合物.
基金资助:
a research grant from the Natural Science and Engineering Research Council of Canada, an equipment grant from the Canada Foundation for Innovation, and funding from the Canada Research Chair program.
SUTRISNO Andre, HUANG Yi-ning*
Received:
2013-02-11
Revised:
2013-11-02
Online:
2013-12-05
Published:
2013-12-05
About author:
Huang Yi-ning, Tel: 519-661-2111x86384, E-mail: yhuang@uwo.ca.
Supported by:
a research grant from the Natural Science and Engineering Research Council of Canada, an equipment grant from the Canada Foundation for Innovation, and funding from the Canada Research Chair program.
摘要:
层状的过渡金属硫化物及其衍生物在许多领域内有着广泛的应用前景. 具体应用包括催化、陶瓷、润滑、能量储存、半导体、电子与光学器件. 该文报道了作者最近用固体核磁共振光谱的方法来表征几种有代表性的过渡金属硫化物(MS2: M=Zr, Ti, W, Mo和Ta)的结果. 并在不同的磁场强度下(21.1、14.1、9.4 T)成功地获取了33S, 47/49Ti, 91Zr, 95Mo 在天然丰度下的固体核磁共振光谱. 为了帮助解释实验结果,同时还进行了量子化学计算. 实验及理论计算的结果都表明33S, 47/49Ti, 91Zr, 95Mo 的固体核磁共振参数对于这些核的局部几何与电子环境非常敏感.
中图分类号:
SUTRISNO Andre, 黄忆宁*. 应用多核固体核磁共振光谱与量子化学计算的方法研究层状的过渡金属硫化物[J]. 波谱学杂志.
SUTRISNO Andre, HUANG Yi-ning*. Multinuclear Solid-State NMR and Quantum Chemical Investigations of Layered Transition Metal Disulfides[J]. Chinese Journal of Magnetic Resonance.
[1]Alberti G, Costantino U. Layered solids and their intercalation chemistry[J]. Compr Supramol Chem, 1996, 7: 1-23.[2]Bruce D W, O'Hare D. Inorganic Materials-Chapter 4: Inorganic Intercalation Compounds (2nd ed.)[M]. New York: John Wiley & Sons Ltd., 1996. 165-235.[3]Guzman R, Lavela P, Perez-Vicente C, et al. Intercalation chemistry of electron donating species into metal chalcogenides with interlayer interactions[J]. Trends Inorg Chem, 1998, 5: 161-181.[4]Jacobson A J. Solid State Chemistry: Compound-Chapter 6: Intercalation Reactions of Layered Compounds[M]. Oxford: Clarendon Press, 1992. 182-233.[5]O'Hare D. Inorganic intercalation compounds[J]. Inorg Mater, 1992: 165-235.[6]Rouxel J. Intercalation chemistry in transition metal dichalcogenides[J]. J Mater Educ, 1986, 8(1-2): 45-81.[7]Whittingham M S. Chemistry of intercalation compounds: Metal guests in chalcogenide hosts[J]. Prog Solid State Chem, 1978, 12(1): 41-99.[8]Wilson J A, Yoffe A D. Transition metal dichalcogenides. Discussion and interpretation of the observed optical, electrical, and structural properties[J]. Advan Phys, 1969, 18(73): 193-335.[9]Edwards J C, Ellis P D. Solid-state molybdenum 95 NMR study of hydrodesulfurization catalysts. 2. Investigation of reduced/sulfided molybdena-alumina catalysts and the effect of promoter ions on "fresh" and reduced/sulfided molybdena-alumina[J]. Langmuir, 1991, 7(10): 2 117-2 134.[10]Bastow T J. 95Mo NMR: hyperfine interactions in MoO3, MoS2, MoSe2, Mo3Se4, MoSi2 and Mo2C[J]. Solid State Nucl Magn Reson, 1998, 12(4): 191-199.[11]d'Espinose de Lacaillerie J B, Gan Z. MAS NMR Strategies for the Characterization of Supported Molybdenum Catalysts[J]. Appl Magn Reson, 2007, 32(4): 499-511.[12]Panich A M, Shames A I, Rosentsveig R, et al. A magnetic resonance study of MoS2 fullerene-like nanoparticles[J]. J Phys: Condens Matter, 2009, 21(39): 395301/01-06.[13]Jakobsen H J, Bildsoe H, Skibsted J, et al. Natural abundance solid-state 95Mo MAS NMR of MoS2 reveals precise 95Mo anisotropic parameters from its central and satellite transitions[J]. Chem Commun, 2010, 46(12): 2 103-2 105.[14]Larsen F H, Jakobsen H J, Ellis P D, et al. Sensitivity Enhanced Quadrupolar Echo NMR of Half-Integer Quadrupolar Nuclei. Magnitudes and Relative Orientation of Chemical Shielding and Quadrupolar Coupling Tensors[J]. J Phys Chem A, 1997, 101(46): 8 597-8 606.[15]Kentgens A P M, Verhagen R. Advantages of double frequency sweeps in static, MAS and MQMAS NMR of spin I=3/2 nuclei[J]. Chem Phys Lett, 1999, 300(3-4): 435-443.[16]Schurko R W, Hung I, Widdifield C M. Signal enhancement in NMR spectra of half-integer quadrupolar nuclei via DFS-QCPMG and RAPT-QCPMG pulse sequences[J]. Chem Phys Lett, 2003, 379(1-2): 1-10.[17]Siegel R, Nakashima T T, Wasylishen R E. Signal enhancement of NMR spectra of half-integer quadrupolar nuclei in solids using hyperbolic secant pulses[J]. Chem Phys Lett, 2004, 388(4-6): 441-445.[18]O'Dell L A, Schurko R W. QCPMG using adiabatic pulses for faster acquisition of ultra-wideline NMR spectra[J]. Chem Phys Lett, 2008, 464(1-3): 97-102.[19]Massiot D, Farnan I, Gautier N, et al. 71Ga and 69Ga nuclear magnetic resonance study of [beta]-Ga2O3: resolution of four- and six-fold coordinated Ga sites in static conditions[J]. Solid State Nucl Magn Reson, 1995, 4(4): 241-248.[20]Tang J A, Masuda J D, Boyle T J, et al. Ultra-wideline 27Al NMR investigation of three- and five-coordinate aluminum environments[J]. ChemPhysChem, 2006, 7(1): 117-130.[21]Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J Phys: Condens Matter, 2002, 14(11): 2 717-2 744.[22]Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP[J]. Z Kristallogr, 2005, 220(5-6): 567-570.[23]Sutrisno A, Terskikh V V, Huang Y. A natural abundance 33S solid-state NMR study of layered transition metal disulfides at ultrahigh magnetic field[J]. Chem Commun, 2009, (2): 186-188.[24]Bronsema K D, De Boer J L, Jellinek F. The structure of molybdenum diselenide and disulfide[J]. Z Anorg Allg Chem, 1986, 540-541: 15-17.[25]Jellinek F. Sulfides of the transition metals of Groups IV, V, and VI[J]. Arkiv Kemi, 1963, 20: 447-480.[26]Kusawake T, Takahashi Y, Wey M Y, et al. X-ray structure analysis and electron density distributions of the layered compounds CuxTiS2[J]. J Phys: Condens Matter, 2001, 13(44): 9 913-9 921.[27]Schutte W J, De Boer J L, Jellinek F. Crystal structures of tungsten disulfide and diselenide[J]. J Solid State Chem, 1987, 70(2): 207-209.[28]Spijkerman A, de Boer J L, Meetsma A, et al. X-ray crystal-structure refinement of the nearly commensurate phase of 1T-TaS2 in (3+2)dimensional superspace[J]. Phys Rev B: Condens Matter, 1997, 56(21): 13 757-13 767.[29]Berger S, Bock W, Marth C F, Raguse B, et al. Titanium-47,49 NMR of some titanium compounds[J]. Magn Reson Chem, 1990, 28(6): 559-560.[30]Bastow T J, Gibson M A, Forwood C T. 47,49Ti NMR: hyperfine interactions in oxides and metals[J]. Solid State Nucl Magn Reson, 1998, 12(4): 201-209.[31]Padro D, Howes A P, Smith M E, et al. Determination of titanium NMR parameters of ATiO3 compounds: correlations with structural distortion[J]. Solid State Nucl Magn Reson, 2000, 15(4): 231-236.[32]Bastow T J, Whitfield H J. 137Ba and 47,49Ti NMR. Electric field gradients in the non-cubic phases of BaTiO3[J]. Solid State Commun, 2001, 117(8): 483-488.[33]Gervais C, Smith M E, Pottier A, et al. Solid-state 47,49Ti NMR determination of the phase distribution of titania nanoparticles[J]. Chem Mater, 2001, 13(2): 462-467.[34]Padro D, Jennings V, Smith M E, et al. Variations of Titanium Interactions in Solid State NMR-Correlations to Local Structure[J]. J Phys Chem B, 2002, 106(51): 13 176-13 185.[35]MacKenzie K J D, Smith M E. Multinuclear Solid-State NMR of Inorganic Materials[M]. Amsterdam: Pergamon, 2002, 740.[36]Ganapathy S, Gore K U, Kumar R, et al. Multinuclear (27Al, 29Si, 47,49Ti) solid-state NMR of titanium substituted zeolite USY[J]. Solid State Nucl Magn Reson, 2003, 24(2-3): 184-195.[37]Gervais C, Veautier D, Smith M E, et al. Solid state 47,49Ti, 87Sr and 137Ba NMR characterization of mixed barium/strontium titanate perovskites[J]. Solid State Nucl Magn Reson, 2004, 26(3-4): 147-152.[38]Erben M, Ruzicka A, Picka M, et al. 47,49Ti NMR spectra of half-sandwich titanium(IV) complexes[J]. Magn Reson Chem, 2004, 42(4): 414-417.[39]Larsen F H, Farnan I, Lipton A S. Separation of 47Ti and 49Ti solid-state NMR lineshapes by static QCPMG experiments at multiple fields[J]. J Magn Reson, 2006, 178(2): 228-236.[40]Wagner G W, Procell L R, Munavalli S. 27Al, 47,49Ti, 31P, and 13C MAS NMR Study of VX, GD, and HD Reactions with Nanosize Al2O3, Conventional Al2O3 and TiO2, and Aluminum and Titanium Metal[J]. J Phys Chem C, 2007, 111(47): 17 564-17 569.[41]Ballesteros R, Fajardo M, Sierra I, et al. Solid-State 49/47Ti NMR of Titanium-Based MCM-41 Hybrid Materials[J]. Langmuir, 2009, 25(21): 12 706-12 712.[42]Zhu J, Trefiak N, Woo T K, et al. A 47/49Ti Solid-State NMR Study of Layered Titanium Phosphates at Ultrahigh Magnetic Field[J]. J Phys Chem C, 2009, 113(23): 10 029-10 037.[43]Tarasov V P, Kirakosyan G A, Padurets L N. 2H and 47,49Ti nuclear magnetic resonance in the gamma phase of titanium deuterides TiDx[J]. Phys Solid State, 2010, 52(3): 493-503.[44]Rossini A J, Hung I, Schurko R W. Solid-State 47/49Ti NMR of Titanocene Chlorides[J]. J Phys Chem Lett, 2010, 1(20): 2 989-2 998.[45]Eichele K, Wasylishen R E W. Solids: Solid-State NMR Simulation Package, v. 1.17.30[CP]. 2001.[46]Peng L, Liu Y, Kim N, et al. Detection of Bronsted acid sites in zeolite HY with high-field 17O-MAS-NMR techniques[J]. Nat Mater, 2005, 4(3): 216-219.[47]Dogan F, Hammond K D, Tompsett G A, et al. Searching for Microporous, Strongly Basic Catalysts: Experimental and Calculated 29Si NMR Spectra of Heavily Nitrogen-Doped Y Zeolites[J]. J Am Chem Soc, 2009, 131(31): 11 062-11 079.[48]Guan J, Li X, Yang G, et al. Interactions of phosphorous molecules with the acid sites of H-Beta zeolite: Insights from solid-state NMR techniques and theoretical calculations[J]. J Mol Catal A: Chem, 2009, 310(1-2): 113-120.[49]Brouwer D H, Moudrakovski I L, Darton R J, et al. Comparing quantum-chemical calculation methods for structural investigation of zeolite crystal structures by solid-state NMR spectroscopy\[J\]. Magn Reson Chem, 2010, 48(S1): S113-S121.[50]Chapman R P, Bryce D L. A high-field solid-state 35/37Cl NMR and quantum chemical investigation of the chlorine quadrupolar and chemical shift tensors in amino acid hydrochlorides[J]. Phys Chem Chem Phys, 2007, 9(47): 6 219-6 230.[51]Lo A Y H, Hanna J V, Schurko R W. A theoretical study of 51V electric field gradient tensors in pyrovanadates and metavanadates[J]. Appl Magn Reson, 2007, 32(4): 691-708.[52]Cuny J, Messaoudi S, Alonzo V, et al. DFT calculations of quadrupolar solid-state NMR properties: some examples in solid-state inorganic chemistry[J]. J Comput Chem, 2008, 29 (13): 2 279-2 287.[53]Yan Z, Kirby C W, Huang Y. Directly Probing the Metal Center Environment in Layered Zirconium Phosphates by SolidState 91Zr NMR\[J\]. J Phys Chem C, 2008, 112(23): 8 575-8 586.[54]Zhu J, Lin Z, Yan Z, et al. 91Zr and 25Mg solid-state NMR characterization of the local environments of the metal centers in microporous materials[J]. Chem Phys Lett, 2008, 461(4-6): 260-265.[55]O'Dell L A, Schurko R W. Static solid-state 14N NMR and computational studies of nitrogen EFG tensors in some crystalline amino acids[J]. Phys Chem Chem Phys, 2009, 11(32): 7 069-7 077.[56]Bastow T J, Smith M E, Stuart S N. Observation of zirconium-91 NMR in zirconium-based metals and oxides[J]. Chem Phys Lett, 1992, 191(1-2): 125-129.[57]Hung I, Schurko R W. Solid-State 91Zr NMR of Bis(cyclopentadienyl)-dichlorozirconium(IV)[J]. J Phys Chem B, 2004, 108(26): 9 060-9 069.[58]Pauvert O, Fayon F, Rakhmatullin A, et al. 91Zr Nuclear Magnetic Resonance Spectroscopy of Solid Zirconium Halides at High Magnetic Field[J]. Inorg Chem, 2009, 48(18): 8 709-8 717.[59]Rossini A J, Hung I, Johnson S A, et al. Solid-State 91Zr NMR Spectroscopy Studies of Zirconocene Olefin Polymerization Catalyst Precursors[J]. J Am Chem Soc, 2010, 132(51): 18 301-18 317.[60]Fedotov M, Belyaev A. A study of the hydrolysis of ZrF6 2- and the structure of intermediate hydrolysis products by 19F and 91Zr NMR in the 9.4 T field[J]. J Struct Chem, 2011, 52(1): 69-74.[61]Lapina O B, Khabibulin D F, Terskikh V V. Multinuclear NMR study of silica fiberglass modified with zirconia[J]. Solid State Nucl Magn Reson, 2011, 39(3-4): 47-57.[62]Wu X L, Lieber C M. Hexagonal domain-like charge density wave phase of tantalum disulfide determined by scanning tunneling microscopy\[J\]. Science, 1989, 243(4899): 1 703-1 705.[63]Naito M, Nishihara H, Tanaka S. NMR study of tantalum-181 in the commensurate charge density wave state of 1T tantalum diselenide and 1T tantalum disulfide[J]. J Phys C: Solid State Phys, 1983, 16(12): 387-393.[64]Naito M, Tanaka S. NMR study of tantalum-181 in the commensurate charge-density-wave state of 1T tantalum diselenide and 1T tantalum disulfide single crystals: a microscopic investigation of the three-dimensional ordering of the charge density waves[J]. J Phys Soc Jpn, 1984, 53(4): 1 217-1 220.[65]Belton P S, Cox I J, Harris R K. Experimental sulfur-33 nuclear magnetic resonance spectroscopy[J]. J Chem Soc, Faraday Trans 2, 1985, 81(1): 63-75.[66]Eckert H, Yesinowski J P. Sulfur-33 NMR at natural abundance in solids[J]. J Am Chem Soc, 1986, 108(9): 2 140-2 146.[67]Hinton J F. Sulfur-33 NMR spectroscopy[J]. Annu Rep NMR Spectrosc, 1987, 19: 1-34.[68]Bastow T J, Stuart S N. NMR study of the zinc chalcogenides (ZnX, X=O, S, Se, Te)[J]. Phys Status Solidi B, 1988, 145(2): 719-728.[69]Wagler T A, Daunch W A, Rinaldi P L, et al. Solid state 33S NMR of inorganic sulfides[J]. J Magn Reson, 2003, 161(2): 191-197.[70]Couch S, Howes A P, Kohn S C, et al. 33S solid state NMR of sulphur speciation in silicate glasses[J]. Solid State Nucl Magn Reson, 2004, 26(3-4): 203-208.[71]Wagler T A, Daunch W A, Panzner M, et al. Solid-state 33S MAS NMR of inorganic sulfates[J]. J Magn Reson, 2004, 170(2): 336-344.[72]d'Espinose de Lacaillerie J B, Barberon F, Bresson B, et al. Applicability of natural abundance 33S solid-state NMR to cement chemistry[J]. Cem Concr Res, 2006, 36(9): 1 781-1 783.[73]Jakobsen H J, Bildsoee H, Skibsted J, et al. A strategy for acquisition and analysis of complex natural abundance 33S solidstate NMR spectra of a disordered tetrathio transitionmetal anion\[J\]. J Magn Reson, 2010, 202(2): 173-179. [74]Moudrakovski I, Lang S, Patchkovskii S, et al. High Field 33S Solid State NMR and First-Principles Calculations in Potassium Sulfates[J]. J Phys Chem A, 2010, 114(1): 309-316.[75]O'Dell L A, Moudrakovski I L. Testing the sensitivity limits of 33S NMR: An ultra-wideline study of elemental sulfur[J]. J Magn Reson, 2010, 207(2): 345-347.[76]Pallister P J, Moudrakovski I L, Ripmeester J A. High-field multinuclear solid-state nuclear magnetic resonance (NMR) and first principle calculations in MgSO4 polymorphs[J]. Can J Chem, 2011, 89(9): 1 076-1 086.[77]O'Dell L A, Ratcliffe C I. Crystal structure based design of signal enhancement schemes for solid-state NMR of insensitive half-integer quadrupolar nuclei[J]. J Phys Chem A, 2011, 115(5): 747-752.[78]Yates J R, Pickard C J, Mauri F. Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials[J]. Phys Rev B: Condens Matter Mater Phys, 2007, 76(2): 024401/0111.[79]Yates J R, Pickard C J, Payne M C, et al. Relativistic nuclear magnetic resonance chemical shifts of heavy nuclei with pseudopotentials and the zeroth-order regular approximation[J]. J Chem Phys, 2003, 118(13): 5 746-5 753.[80]Pyykko P. Year2008 nuclear quadrupole moments[J]. Mol Phys, 2008, 106(16-18): 1 965-1 974.[81]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03 Program, Rev. B.03[CP]. Gaussian, Inc.: Pittsburgh, PA, 2003.[82]Huzinaga S, Andzelm J, Klobukowski M, et al. Gaussian Basis Sets for Molecular Calculations[M]. New York: Elsevier, 1984. 16, 426.[83]Bryce D L, Wasylishen R E. A 95Mo and 13C solid-state NMR and relativistic DFT investigation of mesitylenetricarbonylmolybdenum(0) a typical transition metal pianostool complex\[J\]. Phys Chem Chem Phys, 2002, 4(15): 3 591-3 600.[84]Adiga S, Aebi D, Bryce D L. EFGShield a program for parsing and summarizing the results of electric field gradient and nuclear magnetic shielding tensor calculations[J]. Can J Chem, 2007, 85(7-8): 496-505. |
[1] | 赵尚义 王远军. 基于磁共振图像和改进的UNet++模型区分阿尔茨海默症患者和健康人群[J]. 波谱学杂志, 0, (): 0-0. |
[2] | 鲁 晨 董健健 钟 凯. 9.4T下TX模型鼠脑DTI成像研究[J]. 波谱学杂志, 0, (): 0-0. |
[3] | 王 可 张英华 李雨晴 邹定华. 固体核磁共振技术在水泥基材料研究中的应用[J]. 波谱学杂志, 0, (): 0-0. |
[4] | 刘可文 刘紫龙 汪香玉 陈黎 李钊 吴光耀 刘朝阳. 基于级联卷积神经网络的前列腺磁共振图像分类[J]. 波谱学杂志, 0, (): 0-0. |
[5] | 闫 松 屠小青 彭 梅. 光泵抽运3He极化程度监控系统的设计与实现[J]. 波谱学杂志, 0, (): 0-0. |
[6] | 张一鸣 陈志雪 杨晓云. 丁氟螨酯的波谱学数据解析与结构确证[J]. 波谱学杂志, 0, (): 0-0. |
[7] | 王 强 魏树峰 王 铮 杨文晖. 基于粒子群与遗传算法的矩阵式梯度线圈优化设计[J]. 波谱学杂志, 0, (): 0-0. |
[8] | 王佳鑫 冯继文 陈俊飞 王立英 刘朝阳. 魔角旋转固体核磁共振探头中转子的研制[J]. 波谱学杂志, 0, (): 0-0. |
[9] | 赵智慧 刘表兰 闫小双 武帅帅 茹阁英 毛诗珍 冯继文. PSSS50-b-PNIPAM300嵌段共聚物在二元溶剂中自组装的NMR研究[J]. 波谱学杂志, 0, (): 0-0. |
[10] | 刘慧霞, 辛家祥, 魏达秀. 核自旋单重态的制备及其转化效率和寿命的影响因素分析 [J]. 波谱学杂志, 0, (): 0-0. |
[11] | 雷振宇, 梁欣苗#, 雷友义, 杨 丽, 冯继文. 固体核磁共振技术在锂/钠离子电池碳负极中的应用及研究进展 [J]. 波谱学杂志, 0, (): 0-0. |
[12] | 张之杰 李端秀 罗春 仇汝臣 邓宗武 张海禄. 晶体学辅助的2-吡啶甲酸固体13C化学位移理论计算归属[J]. 波谱学杂志, 0, (): 0-0. |
[13] | 包婉静 曾庆琦 余钫 秦蕾 陈智勇. 一种非连续微波探询信号的实现[J]. 波谱学杂志, 0, (): 0-0. |
[14] | 张芬芬 沈文斌 徐开兵 杨 明. 基于定量核磁共振氢谱测定新药替格瑞洛[J]. 波谱学杂志, 0, (): 0-0. |
[15] | 徐广永 董满园 马建锋 张利民.
固体核磁共振研究半晶聚-3-羟基丁酸酯和聚羟基丁酸戊酸酯的分子动力学(英文) [J]. 波谱学杂志, 0, (): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||