[1] Schobert H H, Song C. Chemicals and materials from coal in the 21st century[J]. Fuel, 2002, 81(1): 15-32.[2] Skripchenko G B. Methodology for studying molecular and supramolecular structures of coals and carbonaceous materials[J]. Solid Fuel Chem, 2009, 43(6): 333-340.[3] Wemmer D E, Pines A, Whitehurst D D. 13C NMR-Studies of coal and coal extracts[J]. Philos Trans R Soc Lond on Ser A-Math Phys Eng Sci, 1981, 300(1 453): 15-41.[4] Castro-Marcano F, Mathews J P. Constitution of Illinois No. 6 argonne premium coal: A review[J]. Energy Fuels, 2011, 25(3): 845-853.[5] Alexcev A D, Ulyanova E V, Vasilenko T A. NMR potentials for studying physical processes in fossil coals[J]. Phys Usp, 2005, 48(11): 1 161-1 175.[6] K-gel-Knabner I. C-13 and N-15 NMR spectroscopy as a tool in soil organic matter studies[J]. Geoderma, 1997, 80(3): 243-270.[7] Friedel R A, Retcofsky H L. Carbon-13 nuclear magnetic resonance spectra of olefins and other hydrocarbons[J]. J Am Chem Soc, 1963, 85(9): 1 300-1 306.[8] Friedel R A, Retcofsk H L. Quantitative application of C13 nuclear magnetic resonance 13C NMR singnals in coal derivatives and petroleum[J]. Chem Ind, 1966, (11): 455-456.[9] Yokono T, Miyazawa K, Sanada Y. Aromaticity of coal extract by H-1 and C-13 pulsed NMR methods[J]. Fuel, 1978, 57(9): 555-558.[10] Hu J Z, Li L Y, Ye C H, et al. NMR-studis of vitrain, pyridin-soluble and-insoluble solid [J]. Sci China Ser A-Math Phys Astron, 1992, 35(6): 747-757.[11] Ma Z R, Zhang P Z, Ding G L, et al. NMR imaging studies of coal swollen With pyridine[J]. Chin Sci Bull, 1997, 42(16): 1 357-1 360.[12] Schweighardt F K, Retcofsky H L, Friedel R A. Chromatographic and NMR analysis of coal liquefaction products[J]. Fuel, 1976, 55(4): 313-317.[13] Mei Yuan-fei(梅远飞), Zhao Xin(赵新), Sun Wan-fu(孙万赋). Spectral analysis of coal tar from xiaohuangshan region(小黄山煤焦油成分的谱学分析)[J]. Chinese J Magn Reson(波谱学杂志), 2011, 28(3): 339-348.[14] Stadelhofer J W, Zander M, Gerhards R. C-13 NMR- study on the hydrogen transfer during the distillation of crude coal-tar[J]. Fuel, 1980, 59(8): 604-605.[15] Zilm K W, Pugmire R J, Grant D M, et al. Comparison of the C-13 NMR-spectra of solid coals and their liquids obtained by catalytic-hydrogenation[J]. Fuel, 1979, 58(1): 11-16. [16] Yokoyama S, Uchino H, Katoh T, et al. Combination of C-13-NMR and H-1-NMR spectroscopy for structural-analysis of neutral, acidic and basic heteroatom compounds in products from coal hydrogenation[J]. Fuel, 1981, 60(3): 254-262.[17] Miyazawa K, Yokono T, Sanada Y. High temperature H-1-NMR study of coal and pitch at ther early stages of carbonizatoin[J]. Carbon, 1979, 17(3): 223-225.[18] Yokono T, Miyazawa K, Sanada Y, et al. High temperature H-1-NMR study of oxidized coal[J]. Fuel, 1981, 60(7): 603-606.[19] Fischer P, Stadelhofer J W, Zander M. C-13 NMR-study of low-volatile by-products of coal-gasification[J]. Fuel, 1979, 58(2): 151-153.[20] Wooton D L, Coleman W M, Taylor L T, et al. Characterization of organic fractions in solvent-refined coal by quantitative NMR-spectroscopy[J]. Fuel, 1978, 57(1): 17-21.[21] Bartle K D, Matthews R S, Stadelhofer J W. Analysis of mixtures of coal-derived phenols by F-19 NMR of hexafluoracetone adducts[J]. Appl Spectrosc, 1980, 34(6): 615-617.[22] Haenel M W, Mynott R, Niemann K, et al. C-13-NMR spectroscopic studies on C-13-labeledmethylated bituminous coal[J]. Angew Chem Int Ed Engl, 1980, 19(8): 636-637.[23] Joseph J T, Wong J L. Distribution of aliphatic and aromatic carbons in H-coal liquids by quantitative C-13 FT-NMR spectroscopy[J]. Fuel, 1980, 59(11): 777-781.[24] Yang B L, Li L Y, Ye C H. Quantitative amendment of high-field C-13 NMR spectra of coals[J]. Chin Sci Bull, 1997, 42(10): 807-809.[25] Macphee J A, Nandi B N. C-13 NMR as a probe for the characterization of the low-temperature oxidation of coal[J]. Fuel, 1981, 60(2): 169-170.[26] Dixon W T, Schaefer J, Sefcik M D, et al. Quantitative chemical-composition of materials such as humic soils,lignins, and coals by high-resolution C-13NMR[J]. J Magn Reson, 1981, 45(1): 173-176.[27] Ju Y W, Li X S. New research progress on the ultrastructure of tectonically deformed coals[J]. Prog Nat Sci, 2009, 19(11): 1 455-1 466.[28] Havens J R, Koenig J L, Kuehn D, et al. Characterization of coals and coal oxidation by magic-angle C-13 NMR-spectroscopy[J]. Fuel, 1983, 62(8): 936-941.[29] Ye C H, Li X N. C-13 high-resolution NMR-spectra of solid coals[J]. Kexue Tongbao, 1986, 31(16): 1 100-1 103.[30] Zhang P Z, Li L Y, Ye C H. Solid-State C-13 NMR-study of Chinese coals[J]. Fuel Sci Technol Int, 1995, 13(4): 467-481.[31] Cheng D Y, Hu J Z, Ye C H. C-13 high resolution solid state NMR spectra of Chinese coals[J]. Sci China Ser D-Earth Sciences, 1997, 40(1): 65-72.[32] Yang B L, Feng J W, Zhou J W, et al. Study of coals by high resolution solid state nuclear magnetic resonance[J]. Sci China Ser A-Math Phys Astron, 1999, 42(3): 305-309.[33] Song Rui(宋瑞), Pan Tie-ying(潘铁英), Shi Xin-mei(史新梅), et al. Coal and its liquefaction products studied by NMR and ESR spectroscopy(煤及其液化产物的13C CP/MAS/TOSS NMR和ESR研究)[J]. Chinese J Magn Reson(波谱学杂志), 2010, 27(2): 206-213.[34] Hagaman E W, Lee S K. F-19-C-13 cross polarization C-13 NMR: An exploratory study of structure and reactivity of fluorinated coal using elemental flourine//Pajares J A, Tascon J M D (Eds.) Coal Science, Vols I and Ii[C]. Amsterdam: Elsevier Science Publ B V, 1995. 339-341.[35] Wroblewski A E, Lensink C, Markuszewski R, et al. P-31 NMR spectroscopic analysis condensates and extracts for heteromatom functionalities possessing labile hydrogen[J]. Energy Fuels, 1988, 2(6): 765-774.[36] Wroblewski A E, Lensink C, Verkade J G. Phosphorus-31 NMR spectroscopy for labile hydrogen group analysis: toward quantitation of phenols in a coal condensate[J]. Energy Fuels, 1991, 5(3): 491-496.[37] Wroblewski A E, Verkade J G. Moisture release from argonne premium coal samples - A quantitative P-31 NMR spectroscopic study[J]. Energy Fuels, 1992, 6(4): 331-335.[38] Mohan T, Verkade J G. Determination of total phenol concentrations in coal-liquefaction resids by P-31 NMR spectroscopy[J]. Energy Fuels, 1993, 7(2): 222-226.[39] Erdmann K, Mohan T, Verkade J G. HPLC and P-31 NMR analysis of phenols in coal liquefaction oils[J]. Energy Fuels, 1996, 10(2): 378-385.[40] Knicker H, Hatcher P G, Scaroni A W. Solid-state N-15 NMR spectroscopy of coal[J]. Energy Fuels, 1995, 9(6): 999-1 002.[41] Knicker H, Hatcher P G, Scaroni A W. A solid-state N-15 NMR spectroscopic investigation of the origin of nitrogen structures in coal[J]. Int J Coal Geol, 1996, 32(1-4): 255-278.[42] Mao J D, Schimmelmann A, Mastalerz M, et al. Structural features of a bituminous coal and their changes during low-temperature oxidation and loss of volatiles investigated by advanced solid-state NMR spectroscopy[J]. Energy Fuels, 2010, 24(4): 2 536-2 544.[43] Cao X Y, Mastalerz M, Chappell M A, et al. Chemical structures of coal lithotypes before and after CO2 adsorption as investigated by advanced solid-state C-13 nuclear magnetic resonance spectroscopy[J]. Int J Coal Geol, 2011, 88(1): 67-74.[44] Erdenetsogt B O, Lee I, Lee S K, et al. Solid-state C-13 CP/MAS NMR study of Baganuur coal, Mongolia: Oxygen-loss during coalification from lignite to subbituminous rank[J]. Int J Coal Geol, 2010, 82(1-2): 37-44.[45] Wu X L, Burns S T, Zilm K W. Spectral Editing in CPMAS NMR. Generating subspectra based on proton multiplicities[J]. J Magn Reson Ser A, 1994, 111(1): 29-36.[46] Hu J Z, Solum M S, Taylor C M V, et al. Structural determination in carbonaceous solids using advanced solid state NMR techniques[J]. Energy Fuels, 2001, 15(1): 14-22.[47] Jurkiewicz A, Bronnimann C E, Maciel G E. H-1 CRAMPS NMR study of the chemical functionality of Argonne Premium coals[J]. Fuel, 1994, 73(6): 823-827.[48] Wilkins R W T, George S C. Coal as a source rock for oil: a review[J]. Int J Coal Geol, 2002, 50(1-4): 317-361.[49] Sun Q L, Li W, Chen H, et al. The variation of structural characteristics of macerals during pyrolysis[J]. Fuel, 2003, 82(6): 669-676.[50] Diaz M C, Steel K M, Drage T C, et al. Determination of the effect of different additives in coking blends using a combination of in situ high-temperature H-1 NMR and rheometry\[J\]. Energy Fuels, 2005, 19(6): 2 423-2 431.[51] Sinag A, Sungur M, Gullu M, et al. Characterization of the liquid phase obtained by copyrolysis of Mustafa Kemal Pasa (M. K. P.) lignite (Turkey) with low density polyethylene[J]. Energy Fuels, 2006, 20(5): 2 093-2 098.[52] Liu D Y, Peng P A. Possible chemical structures and biological precursors of different vitrinites in coal measure in Northwest China[J]. Int J Coal Geol, 2008, 75(4): 204-212.[53] Zhao Y P, Hu H Q, Jin L J, et al. Pyrolysis behavior of weakly reductive coals from northwest china[J]. Energy Fuels, 2009, 23(1): 870-875.[54] Malumbazo N, Wagner N J, Bunt J R, et al. Structural analysis of chars generated from South African inertinite coals in a pipe-reactor combustion unit[J]. Fuel Process Technol, 2011, 92(4): 743-749.[55] Cho W T, Kim S, Choi H K, et al. Characterization of chars made of solvent extracted coals[J]. Korean J Chem Eng, 2012, 29(2): 190-195. |