[1] Wallin E, von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms
[J]. Protein Sci, 1998, 7(4): 1 029-1 038.
[2] Czerski L, Sanders C R. Functionality of a membrane protein in bicelles[J]. Anal Biochem, 2000, 284(2): 327-333.
[3] Hu Y, Li Y, Zhang X, et al. Solution structures and backbone dynamics of a flavodoxin MioC from Escherichia coli in both Apo and Holo forms: implications for cofactor binding and electron transfer[J]. J Biol Chem, 2006, 281(46): 35 454-35 466.
[4] Seddon A M, Curnow P, Booth P J. Membrane proteins, lipids and detergents: not just a soap opera[J]. Biochimica Et Biophysica Acta-Biomembranes, 2004, 1666(1-2): 105-117.
[5] Hu Yun-fei(胡蕴菲), Jin Chang-wei(金长文). NMR studies of protein solution structures and dynamics(蛋白质溶液结构及动力学的核磁共振研究)[J]. Chinese J Magn Reson(波谱学杂志),2009, 26(2): 151-172.
[6] Zhao Bao-lu(赵保路). Applications of electron spin resonance in biology and medicine(电子自旋共振(ESR)技术在生物和医学中的应用)[J]. Chinese J Magn Reson(波谱学杂志), 2010, 27(1): 51-67.
[7] Tamm L K, Liang B Y. NMR of membrane proteins in solution[J]. Prog Nucl Mag Res Spect, 2006, 48(4): 201-210.
[8] Booth P J, Flitsch S L, Stern L J, et al. Intermediates in the folding of the membrane-protein bacteriorhodopsin[J]. Nat Struct Biol, 1995, 2(2): 139-143.
[9] Booth P J, Paulsen H. Assembly of light-harvesting chlorophyll a/b complex in vitro. Time-resolved fluorescence measurements[J]. Biochemistry, 1996, 35(16): 5 103-5 108.
[10] Paulsen H, Finkenzeller B, Kuhlein N. Pigments induce folding of light-harvesting chlorophyll alpha/beta-binding protein[J]. Eur J Biochem, 1993, 215(3): 809-816.
[11] Lau F W, Bowie J U. A method for assessing the stability of a membrane protein[J]. Biochemistry, 1997, 36(19): 5 884-5 892.
[12] Dong M Q, Baggetto L G, Falson P, et al. Complete removal and exchange of sodium dodecyl sulfate bound to soluble and membrane proteins and restoration of their activities, using ceramic hydroxyapatite chromatography[J]. Anal Biochem, 1997, 247(2): 333-341.
[13] Lund S, Orlowski S, Deforesta B, et al. Detergent structure and associated lipid as determinants in the stabilization of solubilized Ca2+-Atpase from sarcoplasmic-reticulum[J]. J Biol Chem, 1989, 264(9): 4 907-4 915.
[14] Fleming K G, Ackerman A L, Engelman D M. The effect of point mutations on the free energy of transmembrane alpha-helix dimerization[J]. J Mol Biol, 1997, 272(2): 266-275.
[15] Deisenhofer J, Epp O, Miki K, et al. Structure of the protein subunits in the photosynthetic reaction center of rhodopseudomonasviridis at 3a resolution[J]. Nature, 1985, 318(6047): 618-624.
[16] Sardet C, Tardieu A, Luzzati V. Shape and size of bovine rhodopsin-small-angle X-ray-scattering study of a rhodopsin-detergent complex[J]. J Mol Biol, 1976, 105(3): 383-407.
[17] Hu Y, Zhao E, Li H, et al. Solution NMR structure of the TatA component of the twin-arginine protein transport system from GramPositive bacterium bacillus subtilis[J]. J Am Chem Soc, 2010, 132(45): 15 942-15 944.
[18] Page R C, Moore J D, Nguyen H B, et al. Comprehensive evaluation of solution nuclear magnetic resonance spectroscopy sample preparation for helical integral membrane proteins[J]. J Struct Funct Genomics, 2006, 7(1): 51-64.
[19] Krueger-Koplin R D, Sorgen P L, Krueger-Koplin S T, et al. An evaluation of detergents for NMR structural studies of membrane proteins[J]. J Biomol NMR, 2004, 28(1): 43-57.
[20] Fernandez C, Wuthrich K. NMR solution structure determination of membrane proteins reconstituted in detergent micelles[J]. FEBS Lett, 2003, 555(1): 144-150.
[21] Sanders C R, Sonnichsen F. Solution NMR of membrane proteins: practice and challenges[J]. Magn Reson Chem, 2006, 44: S24-S40.
[22] Krueger-Koplin R D, Sorgen P L, Krueger-Koplin S T, et al. An evaluation of detergents for NMR structural studies of membrane proteins[J]. J Biomol NMR, 2004, 28(1): 43-57.
[23] Shenkarev Z O, Lyukmanova E N, Solozhenkin O I, et al. Lipid-protein nanodiscs: possible application in high-resolution NMR investigations of membrane proteins and membrane-active peptides[J]. Biochemistry (Mosc), 2009, 74(7): 756-765.
[24] Chou J J, Kaufman J D, Stahl S J, et al. Micelle-induced curvature in a water-insoluble HIV-1 Env peptide revealed by NMR dipolar coupling measurement in stretched polyacrylamide gel[J]. J Am Chem Soc, 2002, 124(11): 2 450-2 451.
[25] Poget S F, Girvin M E. Solution NMR of membrane proteins in bilayer mimics: Small is beautiful, but sometimes bigger is better[J]. Biochimica Et Biophysica Acta-Biomembranes, 2007, 1 768(12): 3 098-3 106.
[26] Poget S F, Cahill S M, Girvin M E. Isotropic bicelles stabilize the functional form of a small multidrug-resistance pump for NMR structural studies[J]. J Am Chem Soc, 2007, 129(9): 2 432-2 433.
[27] Sanders C R, Prosser R S. Bicelles: a model membrane system for all seasons?[J]. Structure, 1998, 6(10): 1 227-1 234.
[28] Czerski L, Sanders C R. Functionality of a membrane protein in bicelles[J]. Anal Biochem, 2000, 284(2): 327-333.
[29] Sanders C R, Landis G C. Reconstitution of membrane-proteins into lipid-rich bilayered mixed micelles for nmr-studies[J]. Biochemistry, 1995, 34(12): 4 030-4 040.
[30] Howard K P, Opella S J. High-resolution solid-state NMR spectra of integral membrane proteins reconstituted into magnetically oriented phospholipid bilayers[J]. J Magn Reson Series B, 1996, 112(1): 91-94.
[31] Picard F, Paquet M J, Levesque J, et al. P-31 NMR first spectral moment study of the partial magnetic orientation of phospholipid membranes[J]. Biophys J, 1999, 77(2): 888-902.
[32] Prosser R S, Volkov V B, Shiyanovskaya I V. Novel chelate-induced magnetic alignment of biological membranes[J]. Biophys J, 1998, 75(5): 2 163-2 169.
[33] McQuade D T, Quinn M A, Yu S M, et al. Rigid amphiphiles for membrane protein manipulation[J]. Angew Chem-Int Edit, 2000, 39(4): 758-761.
[34] Tribet C, Audebert R, Popot J L. Amphipols: Polymers that keep membrane proteins soluble in aqueous solutions[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(26): 15 047-15 050.
[35] Deamer D, Bangham A D. Large volume liposomes by an ether vaporization method[J]. Biochimica Et Biophysica Acta, 1976, 443(3): 629-634.
[36] Szoka F, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(9): 4 194-4 198.
[37] Darszon A, Vandenberg C A, Schonfeld M, et al. Reassembly of protein-lipid complexes into large bilayer vesicles-perspectives for membrane reconstitution[J]. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 1980, 77(1): 239-243.
[38] Darszon A, Vandenberg C A, Ellisman M H, et al. Incorporation of membrane-proteins into large single bilayer vesicles-application to rhodopsin[J]. J Cell Biology, 1979, 81(2): 446-452.
[39] Rigaud J L, Bluzat A, Buschlen S. Incorporation of bacteriorhodopsin into large unilamellar liposomes by reverse phase evaporation
[J]. Biochem Biophys Res Comm, 1983, 111(2): 373-382.
[40] Kasahara M, Hinkle P C. Reconstitution and purification of D-Glucose transporter from human erythrocytes[J]. J Biol Chem, 1977, 252(20): 7 384-7 390.
[41] Seddon A M, Curnow P, Booth P J. Membrane proteins, lipids and detergents: not just a soap opera[J]. Biochimica Et Biophysica Acta, 2004, 1 666(1-2): 105-117.
[42] Shih A Y, Sligar S G, Schulten K. Maturation of high-density lipoproteins[J]. J R Soc Interface, 2009, 6(39): 863-871.
[43] Phillips J C, Wriggers W, Li Z, et al. Predicting the structure of apolipoprotein A-I in reconstituted high-density lipoprotein disks[J]. Biophys J, 1997, 73(5): 2 337-2 346.
[44] Borhani D W, Rogers D P, Engler J A, et al. Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation[J]. Proc Natl Acad Sci USA, 1997, 94(23): 12 291-12 296.
[45] Shih A Y, Freddolino P L, Arkhipov A, et al. Assembly of lipoprotein particles revealed by coarse-grained molecular dynamics simulations[J]. J Struct Biol, 2007, 157(3): 579-592.
[46] Shih A Y, Denisov I G, Phillips J C, et al. Molecular dynamics simulations of discoidal bilayers assembled from truncated human lipoproteins[J]. Biophys J, 2005, 88(1): 548-556.
[47] Denisov I G, Grinkova Y V, Lazarides A A, et al. Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size[J]. J Am Chem Soc, 2004, 126(11): 3 477-3 487.
[48] Nath A, Atkins W M, Sligar S G. Applications of phospholipid bilayer Nanodiscs in the study of membranes and membrane proteins
[J]. Biochemistry, 2007, 46(8): 2 059-2 069.
[49] Brouillette C G, Anantharamaiah G M, Engler J A, et al. Structural models of human apolipoprotein A-: a critical analysis and review
[J]. Biochimica Et Biophysica Acta, 2001, 1531(1-2): 4-46.
[50] Segrest J P. Amphipathic helixes and plasma lipoproteins: thermodynamic and geometric considerations[J]. Chem Phys Lipids, 1977, 18(1): 7-22.
[51] Brouillette C G, Jones J L, Ng T C, et al. Structural studies of apolipoprotein A-I/phosphatidylcholine recombinants by high-field proton NMR, nondenaturing gradient gel electrophoresis, and electron microscopy[J]. Biochemistry, 1984, 23(2): 359-367.
[52] Koppaka V, Silvestro L, Engler J A, et al. The structure of human lipoprotein A-I. Evidence for the "belt" model[J]. J Biol Chem, 1999, 274(21): 14 541-14 544.
[53] Davidson W S, Hilliard G M. The spatial organization of apolipoprotein A-I on the edge of discoidal high density lipoprotein particles: a mass specrometry study[J]. J Biol Chem, 2003, 278(29): 27 199-27 207.
[54] Silva R A, Hilliard G M, Li L, et al. A mass spectrometric determination of the conformation of dimeric apolipoprotein A-I in discoidal high density lipoproteins[J]. Biochemistry, 2005, 44(24): 8 600-8 607.
[55] Thomas M J, Bhat S, Sorci-Thomas M G. The use of chemical cross-linking and mass spectrometry to elucidate the tertiary conformation of lipid-bound apolipoprotein A-I[J]. Curr Opin Lipidol, 2006, 17(3): 214-220.
[56] Bhat S, Sorci-Thomas M G, Alexander E T, et al. Intermolecular contact between globular N-terminal fold and C-terminal domain of ApoA-I stabilizes its lipid-bound conformation - Studies employing chemical cross-linking and mass spectrometry[J]. J Biol Chem, 2005, 280(38): 33 015-33 025.
[57] Gorshkova I N, Liu T, Kan H Y, et al. Structure and stability of apolipoprotein a-I in solution and in discoidal high-density lipoprotein probed by double charge ablation and deletion mutation[J]. Biochemistry, 2006, 45(4): 1 242-1 254.
[58] Martin D D, Budamagunta M S, Ryan R O, et al. Apolipoprotein A-I assumes a “looped belt” conformation on reconstituted high density lipoprotein[J]. J Biol Chem, 2006, 281(29): 20 418-20 426.
[59] Panagotopulos S E, Horace E M, Maiorano J N, et al. Apolipoprotein A-I adopts a belt-like orientation in reconstituted high density lipoproteins[J]. J Biol Chem, 2001, 276(46): 42 965-42 970.
[60] Li H H, Lyles D S, Thomas M J, et al. Structural determination of lipid-bound ApoA-I using fluorescence resonance energy transfer[J]. J Biol Chem, 2000, 275(47): 37 048-37 054.
[61] Li Y, Kijac A Z, Sligar S G, et al. Structural analysis of nanoscale self-assembled discoidal lipid bilayers by solid-state NMR spectroscopy[J]. Biophys J, 2006, 91(10): 3 819-3 828.
[62] Klon A E, Jones M K, Segrest J P, et al. Molecular belt models for the apolipoprotein A-I Paris and Milano mutations[J]. Biophys J, 2000, 79(3): 1 679-1 685.
[63] Segrest J P, Jones M K, Klon A E, et al. A detailed molecular belt model for apolipoprotein A-I in discoidal high density lipoprotein
[J]. J Biol Chem, 1999, 274(45): 31 755-31 758.
[64] Cheung M C, Segrest J P, Albers J J, et al. Characterization of high density lipoprotein subspecies: structural studies by single vertical spin ultracentrifugation and immunoaffinity chromatography[J]. J Lipid Res, 1987, 28(8): 913-929.
[65] Bayburt T H, Sligar S G. Membrane protein assembly into Nanodiscs[J]. FEBS Lett, 2010, 584(9): 1 721-1 727.
[66] Bayburt T H, Sligar S G. Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers[J]. Protein Sci, 2003, 12(11): 2 476-2 481.
[67] Civjan N R, Bayburt T H, Schuler M A, et al. Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers[J]. Biotechniques, 2003, 35(3): 556-560, 562-563.
[68] Sligar S G. Finding a single-molecule solution for membrane proteins[J]. Biochem Bioph Res Comm, 2003, 312(1): 115-119.
[69] Baas B J, Denisov I G, Sligar S G. Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment[J]. Arch Biochem Biophys, 2004, 430(2): 218-228.
[70] Duan H, Civjan N R, Sligar S G, et al. Co-incorporation of heterologously expressed Arabidopsis cytochrome P450 and P450 reductase into soluble nanoscale lipid bilayers[J]. Arch Biochem Biophys, 2004, 424(2): 141-153.
[71] Bayburt T H, Grinkova Y V, Sligar S G. Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins[J]. Nano Lett, 2002, 2(8): 853-856.
[72] Das A, Zhao J, Schatz G C, et al. Screening of type I and II drug binding to human Cytochrome P450-3A4 in Nanodiscs by localized surface plasmon resonance spectroscopy[J]. Anal Chem, 2009, 81(10): 3 754-3 759.
[73] Davydov D R, Fernando H, Baas B J, et al. Kinetics of dithionite-dependent reduction of cytochrome P450 3A4: heterogeneity of the enzyme caused by its oligomerization[J]. Biochemistry, 2005, 44(42): 13 902-13 913.
[74] Denisov I G, Grinkova Y V, Baas B J, et al. The ferrous-dioxygen intermediate in human cytochrome P450 3A4. Substrate ependence of formation and decay kinetics[J]. J Biol Chem, 2006, 281(33): 23 313-23 318.
[75] Leitz A J, Bayburt T H, Barnakov A N, et al. Functional reconstitution of beta(2)-adrenergic receptors utilizing self-assembling Nanodisc technology[J]. Biotechniques, 2006, 40(5): 601-602, 604, 606.
[76] Hiller S, Ibraghimov I, Wagner G, et al. Coupled decomposition of four-dimensional NOESY spectra[J]. J Am Chem Soc, 2009, 131(36): 12 970-12 978.
[77] Lyukmanova E N, Shenkarev Z O, Paramonov A S, et al. Lipid-protein nanoscale bilayers: a versatile medium for NMR investigations of membrane proteins and membrane-active peptides[J]. J Am Chem Soc, 2008, 130(7): 2 140-2 141.
[78] Raschle T, Hiller S, Yu T Y, et al. Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer Nanodiscs[J]. J Am Chem Soc, 2009, 131(49): 17 777-17 779.
[79] Raschle T, Hiller S, Etzkorn M, et al. Nonmicellar systems for solution NMR spectroscopy of membrane proteins[J]. Curr Opin Struct Biol, 2010, 20(4): 471-479.
[80] Yoshiura C, Kofuku Y, Ueda T, et al. NMR analyses of the interaction between CCR5 and its ligand using functional reconstitution of CCR5 in lipid bilayers[J]. J Am Chem Soc, 2010, 132(19): 6 768-6 777.
[81] Katzen F, Peterson T C, Kudlicki W. Membrane protein expression: no cells required[J]. Trends Biotechnol, 2009, 27(8): 455-460.
[82] Shimizu Y, Kuruma Y, Ying B W, et al. Cell-free translation systems for protein engineering[J]. FEBS J, 2006, 273(18): 4 133-4 140.
[83] Katzen F, Chang G, Kudlicki W. The past, present and future of cell-free protein synthesis[J]. Trends Biotechnol, 2005, 23(3): 150-156.
[84] Farrokhi N, Hrmova M, Burton R A, et al. Heterologous and cell free protein expression systems[J]. Method Mol Biol, 2009, 513: 175-198.
[85] Luirink J, von Heijne G, Houben E, et al. Biogenesis of inner membrane proteins in Escherichia coli[J]. Annu Rev Microbiol, 2005, 59: 329-355.
[86] Andersson H, Vonheijne G. Membrane-protein topology-effects of delta-Mu(H)+ on the translocation of charged residues explain the positive inside rule[J]. Embo J, 1994, 13(10): 2 267-2 272.
[87] Cappuccio J A, Blanchette C D, Sulchek T A, et al. Cell-free Co-expression of functional membrane proteins and apolipoprotein, forming soluble nanolipoprotein particles[J]. Mol Cell Proteomics, 2008, 7(11): 2 246-2 253.
[88] Katzen F, Fletcher J E, Yang J P, et al. Insertion of membrane proteins into discoidal membranes using a cell-free protein expression approach[J]. J Proteome Research, 2008, 7(8): 3 535-3 542.
[89] Alami M, Dalal K, Lelj-Garolla B, et al. Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA[J]. Embo J, 2007, 26(8): 1 995-2 004.
[90] Frias J C, Williams K J, Fisher E A, et al. Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques[J]. J Am Chem Soc, 2004, 126(50): 16 316-16 317. |