[1] Piao Z, Park C, Park J H, et al. Allelotype analysis of hepatocellular carcinoma[J]. Int J Cancer, 1998, 75: 29-33.
[2] Nagai H, Pineau P, Tiollais P, et al. Comprehensive allelotyping of human hepatocelllular carcinoma[J]. Oncogene, 1997, 14: 2 927-2 933.
[3] Wong N, Lai P, Pang E, et al. A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping[J]. Hepatology, 2000, 32: 1 060-1 068.
[4] Ching Y P, Wong C M, Chan S F, et al. Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is underexpressed in hepatocellular carcinoma[J]. J Biol Chem, 2003, 278: 10 824-10 830.
[5] Yuan B Z, Miller M J, Keck C L, et al. Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP[J]. Cancer Res, 1998, 58: 2 196-2 199.
[6] Ng I O L, Liang Z D, Cao L, et al. DLC-1 is deleted in primary hepatocellular carcinoma and exerts inhibitory effects on the proliferation of hepatoma cell lines with deleted DLC-1[J]. Cancer Res, 2000, 60: 6 581-6 584.
[7] Ng D C, Chan S F, Kok K H, et al. Mitochondrial targeting of growth suppressor protein DLC2 through the START domain[J]. FEBS Lett, 2006, 580: 191-198.
[8] Li H, Fung K L, Jin D Y, et al. Solution structures, dynamics, and lipid-binding of the sterile-α-motif domain of the deleted in liver cancer 2[J]. Proteins, 2007, 67: 1 154-1 166.
[9] Kwan J J, Donaldson L W. The NMR structure of the murine DLC2 SAM domain reveals a variant fold that if similar to a four-helix bundle[J]. BMC Struct Biol, 2007, 7: 34.
[10] Ottiger M, Bax A. Characterization of magnetically oriented phospholipids micelles for measurement of dipolar couplings in cromolecules
[J]. J Biomol NMR, 1998, 12: 361-372.
[11] Tjandra N, Bax A. Direct measurement if distances and angles in biomolesules by NMR in s dilute liquid crystalline medium[J]. Science, 1997, 278: 1 111-1 114.
[12] Tjandra N, Omichinski J G, Gronenborn A M, et al. Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution[J]. Nat Struct Biol, 1997, 4: 732-738.
[13] Clore G M, Starich M R, Bewley C A, et al. Impact of residual dipolar coupling on the accuracy of NMR structures determined from a minimal number of NOE restraints[J]. J Am Chem Soc, 1999, 121: 6 513-6 514.
[14] Losonczi J A, Prestegard J H. J Improved dilute bicelle solutions for high-resolution NMR of biological macromolecules[J]. Biomol NMR, 1998, 12: 447-451.
[15] Ottiger M, Delaglio F, Bax A. Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra[J]. J Magn Reson, 1998, 131: 373-378.
[16] Goddard T D, Kneller D G. SPARKY[CP]. University of California, San Francisco, 1991.
[17] Schwieters C D, Kuszewski J J, Clore G M. Using Xplor-NIH for NMR milecular structure determination[J]. Prog Nucl Magn Reson Spectrosco, 2006, 48: 47-62.
[18] DeLano W L. Open-source PyMOL[CP]. DeLano Scientific LLC, San Carlos, 2004.
[19] Zweckstetter M, Bax A. Prediction of sterically induced alignment in s dilute liquid crystalline phase: Aid to protein structure determination[J]. J Am Chem Soc, 2000, 122: 3 791-3 792.
[20] Cornilescu G, Marquardt J L, Ottiger M, et al. Validation okf protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase[J]. J Am Chem Soc, 1998, 120: 6 836-6 837.
[21] Ottiger M, Bax A. Bicelle-based liquid crystals for NMR-measurement of dipolar couplings as acidic and basic pH values[J]. J Biomol NMR, 1999, 13: 187-191.
[22] Schwieters C D, Kuszewski J J, Tjandra N, et al. The Xplor-NIH NMR molecular structure determination package[J]. J Magn Reson, 2003, 160: 65-73.
[23] Clore G M, Gronenborn A M, Bax A. A robust method for determinaing the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information[J]. J Magn Reson, 1998, 133: 216-221.
[24] Clore G M, Gronenorn A M, Tjandra N. Direct structure refinment against residual dipolar couplings in the presence of rhombicity of unknown magnitude[J]. J Magn Reson, 1998, 131: 159-162.
[25] Zweckstetter M, Hummer G, Bax A. Prediction of charge-induced molecuilar alignment of biomolecules dissoved in dilute liquidcrystalline phases[J]. Biophys J, 2004, 86: 3 444-3 460.
[26] Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features[J]. Biopolymers, 1983, 22: 2 577-2 637.
[27] Koradi R, Billeter M, Wuthrich K. MOLMOL: a program for display and anaysis of macromolecular structures[J]. J Mol Graphics, 1996, 14: 51-55.
[28] Laskowski R A, MacArthur M W, Moss D S, et al. PROCHECK:a program to check the stereochemical quality of protein structures[J]. J Appl Cryst, 1993, 26: 283-291.
[29] Yap K L, Ames J B, Swindells M B, et al. Vector geometry mapping. A method to characterize the conformation of helix-loop-helix calciumbinding proteins[J]. Methods Mol Biol, 2002, 173: 317-324.
[30] Thanos C D, Faham S, Goodwill K E, et al. Monomeric structure of the human EphB2 Sterile alpha motif domain[J]. J Biol Chem, 1999, 274: 37 301-37 306.
[31] Grimshaw S J, Mott H R, Stott K M, et al. Structure of the sterile alpha motif (SAM) domain of the Saccharomyces cerevisiae mitogenactivated protein kinase pathwaymodulating protein STE50 and analysis of its interaction with the STE11 SAM[J]. J Biol Chem, 2004, 279: 2 192-21 201.
[32] Chi S W, Ayed A, Arrowsmith C H. Solution structure of a conserved C-terminal domain of p73 with structural homology to the SAM domain[J]. EMBO J 1999, 18: 4 438-4 445.
[33] Holm L, Park J. DaliLite workbench for protein structure comparison[J]. Bioinformatics 2000, 16: 566-567.
[34] Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucl Acids Res, 1997, 25: 4 876-4 882.
[35] Roignant J Y, Hamel S, Janody F, et al. The novel SAM domain protein Aveugle is required for Raf activation in the Drosophila receptor signaling pathway[J]. Genes Dev, 2006, 20: 795-806.
[36] Douziech M, Sahmi M, Laberge G, et al. A KSR/CNK complex mediated by HYP, a novel SAM domain-containing protein, regulates RASdependent RAF activation in Drosophila[J]. Genes Dev, 2006, 20: 807-819.
[37] Aviv T, Lin Z, Lau S, et al. The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators[J]. Nat Struct Biol, 2003, 10: 614-621.
[38] Oberstrass F C, Lee A, Stefl R, et al. Shape-specific recognition in the structure of the Vts1p SAM domain with RNA[J]. Nat Struct Mol Biol, 2006, 13: 160-167.
[39] Barrera F N, Poveda J A, Gonzalez-Ros J M, et al. Binding of the C-terminal sterile alpha motif (SAM) domain of human p73 to lipid membranes[J]. J Biol Chem, 2003, 278: 46 878-46 885.
[40] Kim C A, Phillips M L, Kim W, et al. Polymerizaton of the SAM domain of TEL in leukemogenesis and transcriptional repression[J]. EMBO J, 2001, 20: 4 173-4 182.
[41] Kim C A, Gingery M, Pilpa R M, et al. The SAM domain of polyhomeotic forms a helical polymer[J]. Nat Struct Biol, 2002, 9: 453-457.
[42] Leung T H, Ching Y P, Yam J W, et al. Deleted in liver cancer 2 (DLC2) suppresses cell transformation by means of inhibition of RhoA activity[J]. Proc Natl Acad Sci USA, 2005, 102: 15 207-15 212. |