[1] Pervushin K, Riek R, Wider G, et al. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of large biological macromolecules in solution[J]. Proc Natl Acad Sci USA, 1997, 94: 12 366-12 371.
[2] Riek R, Wider G, Pervushin K, et al. Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules[J]. Proc Natl Acad Sci USA, 1999, 96: 4 918-4 923.
[3] Salzmann M, Wider G, Pervushin K, et al. TROSY-type triple-resonance experiments for sequential NMR assignments of large protein[J]. J Am Chem Soc, 1998, 121: 844-848.
[4] Fiaux J, Eric B B, Arthur L H, et al. NMR analysis of a 900K GroEL-GroES complex[J]. Nature, 2002, 418: 207-211.
[5] Bodenhausen G, Ruben D J. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy[J]. Chem Phys Lett, 1980, 69: 185-189.
[6] Piotto M, Saudek V, Sklenar V. Gradient-tailored Excitation for Single-Quantum NMR Spectroscopy of Aqueous Solutions[J]. J Biomol NMR, 1992, 2: 661-665.
[7] Sφrensen O W, Eich G W, Levitt M H, et al. Product operator formalism for the description of NMR pulse experiment[J]. Prog NMR Spectr, 1983, 16: 163-192.
[8] Morris G A, Freeman R. Enhancement of nuclear magnetic resonance signals by polarization transfer[J].J Am Chem Soc, 1979, 101: 760-762.
[9] Wokaun A, Ernst R R. Selective excitation and detection in multilevel spin systems: application of single transition operators[J]. J Chem Phys, 1977, 67: 1 752-1 758.
[10] Freeman R, Wittekoek S, Ernst R R. High-Resolution NMR Study of Relaxation Mechanisms in a Two-Spin System[J]. J Chem Phys, 1970, 52: 1 529-1 544.
[11] Riek R, Pervushin K, Wüthrich K. TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution[J]. Trends Biochem Sci, 2000, 25: 462-468.
[12] Cavanagh J, Rance M. Sensitivity Improvement in Isotropic Mixing (TOCSY) Experiments[J]. J Magn Reson, 1990, 88: 72-85.
[13] Rance M, Loria J P, Palmer A G. Sensitivity improvement of transverse relaxation-optimized spectroscopy[J]. J Magn Reson, 1999, 136: 92-101.
[14] Grzesiek S, Bax A. The importance of not saturating water in protein NMR. Application to sensitivity enhancement and NOE measurements
[J]. J Am Chem Soc, 1993, 115: 12 593-12 594.
[15] Zhu G, Xiang M K, Kong H S. Gradient and sensitivity enhancement of 2D TOCSY with water-flip-back, 3D NOESY-TROSY and TOCSYTROSY experiment[J]. J Biomol NMR, 1999, 13: 77-81.
[16] Thomas S H, Ole W S. Clean TROSY: compensation for relaxation-induced artifacts[J]. J Magn Reson, 2000, 144: 123-128.
[17] Morten D S, Axel M, Ole W S. Spin-state-selective coherence transfer via intermediate states of two-spin coherence in IS spin systems: application to E.COSY-type measurement of J coupling constants[J].J Biomol NMR, 1997, 10: 181-186.
[18] Pervushin K, Riek R, Wider G, et al. Transverse relaxation-optimized spectroscopy (TROSY) for NMR studies of aromatic spin systems in 13C-labeled proteins[J]. J Am Chem Soc, 1998, 120: 6 394-6 400.
[19] Meissner A, Ole W S.Optimization of three-dimensional TROSY-type HCCH NMR correlation of aromatic 1H-13C groups in proteins[J]. J Magn Reson, 1999, 139: 447-450.
[20] Herbrüggen T S, Briand J, Meissner A, et al. Spin-State-Selective TPPI: A New Method for Suppressionof Heteronuclear Coupling Constants in Multidimensional NMR Experiments[J]. J Magn Reson, 1999, 139: 443-446.
[21] Salzmann M, Pervushin K, Wider G, et al. TROSY in triple-resonance experiment: new perspectives for sequential NMR assignment of large protein[J]. Proc Natl Acad Sci USA, 1998, 95: 13 585-13 590.
[22] Ikura M, Kay L E, Bax A. A Novel Approach for Sequential Assignment of 1H, 13C, and 15N Spectra of Larger Proteins: Heteronuclear Triple-Resonance Three-Dimensional NMR Spectroscopy. Application to Calmodulint[J]. Biochemistry. 1990, 29: 4 659-4 667.
[23] Salzmann M, PervushinK, Wider G, et al. 13C constant time 15N, 1H-TROSY-HNCA for sequential assignment of large proteins[J]. J Biomol NMR, 1999, 14: 85-88.
[24] Salzmann M, Wider G, Pervushin K, et al. Improved sensitivity and coherences selection for 15N, 1H-TROSY elements in triple resonance experiments[J]. J Biomol NMR, 1999, 15: 181-184.
[25] Fernández C, Adeishvili Koba, Wüthrich K. Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein Ompx in dihexanoyl phosphatidylcholine micelles[J]. Proc Natl Acad Sci USA, 2001, 98: 2 358-2 363.
[26] Pervushin K, Wider G, Riek R, et al. The 3D NOESY 1H, 15N, 1H-ZQ-TROSY NMR experiment with diagonal peak suppression[J]. Proc Natl Acad Sci USA, 1999, 96: 9 607-9 612.
[27] Pervushin K, Braun D, Fernández C, et al. [15N, 1H]/[13C, 1H]-TROSY for simultaneous detection of backbone 15N-1H, aromatic 13C-1H and side-chain 15N-1H-2 correlations in large proteins[J]. J Biomol NMR, 2001, 17: 195-202.
[28] Pervushin K, Ono A, Fernández C, et al. NMR scalar couplings across Watson-Crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy[J]. Proc Natl Acad Sci USA, 1998, 95: 14 147-14 151.
[29] Yan X Z, Kong X M, Xia Y L, et al. Determination of internucleotide hJHN couplings by the modified 2D JNN correlated [15N, 1H]-TROSY[J]. J Magn Reson, 2000, 147: 357-360.
[30] Karplus M. Contact electron-spin coupling of nuclear magnetic moments[J]. J Chem Phys, 1959, 30: 11-15.
[31] Ko¨vér K E, Batta G. J-modulated TROSY experiment extends the limits of homonuclear coupling measurements for large proteins[J]. J Magn Reson, 2001, 151: 60-64.
[32] Permi P, Kilpel [AKa¨inen I, Annila A. Determination of backbone angle y in proteins using a TROSY-based α/β-HN(CO)CA-J experiment
[J]. J Magn Reson, 2000, 146: 255-259.
[33] Farrow N A, Muhandiram R, Singer A U, et al. Backbone Dynamics of a Free and a Phosphopeptide-Complexed Src Homology 2 Domain Studied by 15N NMR Relaxation[J]. Biochemistry, 1994, 33: 5 984-6 003.
[34] Zhu G, Xia Y L, Nicholson L K, et al. Protein dynamics measurement by TROSY-based NMR experiments[J]. J Magn Reson, 2000, 143: 423-426.
[35] Wider G, Wüthrich K. NMR spectroscopy of large molecules multimolecular assemblies in solution[J]. Curr Opin Struc Biol, 1999, 9: 594-601.
[36] Rüdiger S, Stefan M V F, Veprintsev D B, et al. TROSY-CRINEPT NMR reveals p53 core domain bound in an unfolded form to the chaperone Hsp90[J]. Proc Natl Acad Sci USA, 2002, 99: 11 085-11 090. |