波谱学杂志

• •    

基于全局和局部特征信息的生成对抗网络在海马体分割中的应用

魏志宏1,孔旭东1,孔燕1,闫士举2,丁阳1,魏贤顶1,孔栋1,杨波1*   

  1. 1. 江南大学附属医院 肿瘤放疗科,江苏 无锡 214122;2. 上海理工大学 健康科学与工程学院,上海 200093
  • 收稿日期:2024-09-03 修回日期:2024-11-15 出版日期:2024-11-18 在线发表日期:2024-11-18
  • 通讯作者: 杨波 E-mail:wuxiyangbo@163.com

Application of generative adversarial networks based on global and local feature information in hippocampus segmentation

WEI Zhihong1,KONG Xudong1,KONG Yan1,YAN Shiju2,DING Yang1,WEI Xianding1,KONG Dong1,YANG Bo1*   

  1. 1. Affiliated Hospital of Jiangnan University, Radiotherapy oncology department, Wuxi 214122, China;2. School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2024-09-03 Revised:2024-11-15 Published:2024-11-18 Online:2024-11-18
  • Contact: YANG Bo E-mail:wuxiyangbo@163.com

摘要: 由于海马体结构复杂、体积小,导致海马体精准分割较为困难.为此,本文提出一种基于全局和局部特征信息的生成对抗网络(GLGAN)分割方法.首先,为了提高网络稳定性和海马体分割精度,减少信息丢失和梯度爆炸等问题,本文通过改进生成对抗网络的生成器和损失函数,提出了全局生成对抗网络方法(GGAN).其次,由于判别器本质上是二分类的分类器,对微小局部变换不敏感,本文提出具有全局和局部特征信息的双判别器网络结构的生成对抗网络方法.最后,设计一个平衡生成对抗网络(GAN)对抗性损失和3D u-net分割损失的总损失函数.实验结果表明GLGAN有利于密集评估海马体,促进判别器将生成器生成的掩膜值推向更真实分布,提高海马体分割精度.GLGAN分割海马体的Dice系数为0.804、IOU为0.672.

关键词: 生成对抗网络(GAN), 3D卷积神经网络, 分割, 海马体, 3D u-net

Abstract: Due to the complex structure and small size of the hippocampus, it is difficult to segment the hippocampus accurately. To address this issue, a method of the generative adversarial network (GAN) segmentation hippocampus method based on global and local feature information (GLGAN) is proposed. Firstly, in order to improve the stability of the network and the accuracy of hippocampus segmentation, and reduce the problems of information loss and gradient explosion, the global generative adversarial network method (GGAN) is proposed by improving the generator and loss function of GAN. Secondly, since the discriminator is essentially a binary classifier and is not sensitive to small local changes, a GAN method of dual discriminator network structure with global and local feature information is proposed. Finally, a total loss function is designed to balance GAN adversarial loss and 3D u-net segmentation loss. The experimental results show that the GLGAN is conducive to the intensive evaluation of the hippocampus, promotes the discriminator to push the mask value generated by the generator to a more realistic distribution, and improves the segmentation accuracy of the hippocampus. The Dice coefficient and IOU of GLGAN segmentation of hippocampus are 0.804 and 0.672 respectively.

Key words: Generative adversarial network (GAN), 3D CNN, Segmentation, Hippocampus, 3D u-net