[1] |
RONNEBERGER T, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]// International Conference on Medical image computing and computer-assisted intervention. Springer, 2015: 234-241.
|
[2] |
REHMAN M U, CHO S B, KIM J, et al. Brainseg-net: Brain tumor mr image segmentation via enhanced encoder-decoder network[J]. Diagnostics, 2021, 11(2): 169.
doi: 10.3390/diagnostics11020169
|
[3] |
ZHAO L, MA J, SHAO Y, et al. MM-UNet: A multimodality brain tumor segmentation network in MRI images[J]. Front Oncol, 12: 950706. doi: 10.3389/fonc.2022.950706.
doi: 10.3389/fonc.2022.950706
|
[4] |
SHENG N, LIU D, ZHANG J, et al. Second-order ResU-Net for automatic MRI brain tumor segmentation[J]. Math Biosci Eng, 2021, 18(5): 4943-4960.
doi: 10.3934/mbe.2021251
pmid: 34517471
|
[5] |
HAN Y, SONG J M, XUE A Y, et al. Triple attention segmentation network for brain tumor images[J]. Chin J Biomed Eng, 2022, 41(1): 57-63.
|
|
韩阳, 宋金淼, 薛安懿, 等. 基于三重注意力的脑肿瘤图像分割网络[J]. 中国生物医学工程学报, 2022, 41(1): 57-63.
|
[6] |
ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. Unet++: A nested u-net architecture for medical image segmentation[C]// Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support:4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, Proceedings 4. Springer International Publishing, 2018: 3-11.
|
[7] |
HUANG H, LIN L, TONG R, et al. Unet 3+: A full-scale connected unet for medical image segmentation[C]// ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020: 1055-1059.
|
[8] |
QIN C, WU Y, LIAO W, et al. Improved U-Net3+ with stage residual for brain tumor segmentation[J]. BMC Medical Imaging, 2022, 22(1): 1-15.
doi: 10.1186/s12880-021-00730-0
|
[9] |
CHILD R, GRAY S, RADFORD A, et al. Generating long sequences with sparse transformers[J]. arXiv preprint arXiv:1904.10509, 2019.
|
[10] |
YANG F, YANG H, FU J, et al. Learning texture transformer network for image super-resolution[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 5791-5800.
|
[11] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[J]. arXiv preprint arXiv:2010.11929, 2020.
|
[12] |
TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers & distillation through attention[C]// International conference on machine learning. PMLR, 2021: 10347-10357.
|
[13] |
LIU Z, LIN Y, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]// Proceedings of the IEEE/CVF international conference on computer vision. 2021: 10012-10022.
|
[14] |
GRAHAM B, EL-NOUBY A, TOUVRON H, et al. Levit: a vision transformer in convnet's clothing for faster inference[C]// Proceedings of the IEEE/CVF international conference on computer vision. 2021: 12259-12269.
|
[15] |
CHEN J, LU Y, YU Q, et al. Transunet: Transformers make strong encoders for medical image segmentation[J]. arXiv preprint arXiv:2102.04306, 2021.
|
[16] |
WANG W, CHEN C, DING M, et al. Transbts: Multimodal brain tumor segmentation using transformer[C]// Medical Image Computing and Computer Assisted Intervention-MICCAI 2021: 24th International Conference, Strasbourg, France, Proceedings, Part I 24. Springer International Publishing, 2021: 109-119.
|
[17] |
HUANG L, CHEN L, ZHANG B, et al. A transformer-based generative adversarial network for brain tumor segmentation[J]. arXiv preprint arXiv:2207.14134, 2022.
|
[18] |
HO J, KALCHBRENNER N, WEISSENBORN D, et al. Axial attention in multidimensional transformers[J]. arXiv preprint arXiv:1912.12180, 2019.
|
[19] |
GUO M H, LIU Z N, MU T J, et al. Beyond self-attention: External attention using two linear layers for visual tasks[J]. IEEE Transactions on Pattern Anal, 2023, 45(1): 5436-5447.
|
[20] |
DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]// Proceedings of the IEEE international conference on computer vision. 2017: 764-773.
|
[21] |
HOU A, WU L, SUN H, et al. Brain Segmentation Based on UNet++ with Weighted Parameters and Convolutional Neural Network[C]// IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). IEEE, 2021: 644-648.
|
[22] |
CHEN J, LU Y, YU Q, et al. Transunet: Transformers make strong encoders for medical image segmentation[J]. arXiv preprint arXiv:2102.04306, 2021.
|
[23] |
SHAKER A, YAN W Y, LAROCQUE P E. Automatic land-water classification using multispectral airborne LiDAR data for near-shore and river environments[J]. ISPRS J Photogramm, 2019, 152: 94-108.
doi: 10.1016/j.isprsjprs.2019.04.005
|
[24] |
ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. Unet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE T Med Maging, 2019, 39(6): 1856-1867.
|
[25] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 2017: 5998-6008.
|