波谱学杂志 ›› 2024, Vol. 41 ›› Issue (4): 443-453.doi: 10.11938/cjmr20243113
收稿日期:
2024-04-26
出版日期:
2024-12-05
在线发表日期:
2024-05-29
通讯作者:
* Tel: 021-62233775, E-mail: PANG Qifan1, WANG Zhichao2, WU Yupeng1, LI Jianqi1,*()
Received:
2024-04-26
Published:
2024-12-05
Online:
2024-05-29
Contact:
* Tel: 021-62233775, E-mail: 摘要:
在化学交换饱和转移(CEST)成像实验中,由于信号采集过程中纵向磁化矢量的弛豫恢复,实际采集信号的CEST对比度呈持续衰减状态,因此,CEST分段饱和模式以及对应的K空间填充方法会对CEST的图像质量和定量结果产生不同的影响. 本文通过仿真和人体实验,探究了快速小角度激发(FLASH)序列中不同K空间填充策略对颅脑酰胺质子转移(APT)成像质量以及APT对比度的影响. 研究结果显示,采用分段饱和与重排优化K空间中心优先填充技术,可有效消除皮下脂肪导致的伪影,并提高APT非对称分析获取非对称性磁化转移率MTRasym的准确性.
中图分类号:
逄奇凡, 王志超, 武玉朋, 李建奇. K空间填充策略对基于FLASH序列的APT图像脂肪伪影的影响[J]. 波谱学杂志, 2024, 41(4): 443-453.
PANG Qifan, WANG Zhichao, WU Yupeng, LI Jianqi. The Impact of K-Space Filling Strategy on Fat Artifacts in APT Imaging Based on FLASH Sequence[J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 443-453.
表2
五种K空间填充策略下的不同K空间采集顺序
K空间 相位编码顺序 | 单次饱和与 顺序采集 | 单次饱和与 中心优先采集 | 分段饱和与 顺序采集 | 分段饱和与 中心优先采集 | 分段饱和与 重排中心优先采集 |
---|---|---|---|---|---|
1 | 1 | 127 | #1-1 | #4-31 | #3-32 |
2 | 2 | 125 | #1-2 | #4-29 | #1-32 |
: | : | : | : | : | : |
16 | 16 | 97 | #1-16 | #4-1 | #1-25 |
17 | 17 | 95 | #1-17 | #3-31 | #3-24 |
: | : | : | : | : | : |
32 | 32 | 65 | #1-32 | #3-1 | #1-17 |
33 | 33 | 63 | #2-1 | #2-31 | #3-16 |
: | : | : | : | : | : |
48 | 48 | 33 | #2-16 | #2-1 | #1-9 |
49 | 49 | 31 | #2-17 | #1-31 | #3-8 |
: | : | : | : | : | : |
63 | 63 | 3 | #2-31 | #1-3 | #3-1 |
64 | 64 | 1 | #2-32 | #1-1 | #1-1 |
65 | 65 | 2 | #3-1 | #1-2 | #2-1 |
66 | 66 | 4 | #3-2 | #1-4 | #4-1 |
: | : | : | : | : | : |
80 | 80 | 32 | #3-16 | #1-32 | #4-8 |
81 | 81 | 34 | #3-17 | #2-2 | #2-9 |
: | : | : | : | : | : |
96 | 96 | 64 | #3-32 | #2-32 | #4-16 |
97 | 97 | 66 | #4-1 | #3-2 | #2-17 |
: | : | : | : | : | : |
112 | 112 | 96 | #4-16 | #3-32 | #4-24 |
113 | 113 | 98 | #4-17 | #4-2 | #2-25 |
: | : | : | : | : | : |
127 | 127 | 126 | #4-31 | #4-30 | #2-32 |
128 | 128 | 128 | #4-32 | #4-32 | #4-32 |
[1] |
WARD K M, ALETRAS A H, BALABAN R S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)[J]. J Magn Reson, 2000, 143(1): 79-87.
doi: 10.1006/jmre.1999.1956 pmid: 10698648 |
[2] | ZHANG Y, LOU F Y, FANG K, et al. Review of a new molecular imaging method——deuterium metabolic spectroscopy and imaging[J]. Chinese J Magn Reson, 2022, 39(3): 356-365. |
张怡, 楼飞洋, 方可, 等. 分子影像新技术——氘代谢波谱及成像的综述与展望[J]. 波谱学杂志, 2022, 39(3): 356-365.
doi: 10.11938/cjmr20222999 |
|
[3] |
WARD K M, BALABAN R S. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST)[J]. Magn Reson Med, 2000, 44(5): 799-802.
pmid: 11064415 |
[4] |
ZHOU J Y, PAYEN J F, WILSON D A, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9(8): 1085-1090.
doi: 10.1038/nm907 pmid: 12872167 |
[5] | TAO Q, YI P W, WEI G J, et al. pH Imaging based on chemical exchange saturation transfer: Principles, methods, applications and recent progresses[J]. Chinese J Magn Reson, 2018, 35(4): 505-519. |
陶泉, 易佩伟, 魏国境, 等. 基于CEST机制的pH成像方法、原理和应用[J]. 波谱学杂志, 2018, 35(4): 505-519.
doi: 10.11938/cjmr20182664 |
|
[6] |
TERRENO E, CASTELLI D D, CRAVOTTO G, et al. Ln(iii)-dotamgly complexes: A versatile series to assess the determinants of the efficacy of paramagnetic chemical exchange saturation transfer agents for magnetic resonance imaging applications[J]. Invest Radiol, 2004, 39(4): 235-243.
pmid: 15021328 |
[7] |
ZHAO X, WEN Z, HUANG F, et al. Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T[J]. Magn Reson Med, 2011, 66(4): 1033-1041.
doi: 10.1002/mrm.22891 pmid: 21394783 |
[8] | HEO H Y, JONES C K, HUA J, et al. Whole-brain amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging in glioma patients using low-power steady-state pulsed chemical exchange saturation transfer (CEST) imaging at 7T[J]. J Magn Reson Imaging, 2016, 44(1): 41-50. |
[9] |
SUN C, ZHAO Y, ZU Z. Validation of the presence of fast exchanging amine CEST effect at low saturation powers and its influence on the quantification of APT[J]. Magn Reson Med, 2023, 90(4): 1502-1517.
doi: 10.1002/mrm.29742 pmid: 37317709 |
[10] | FOO L S, HARSTON G, MEHNDIRATTA A, et al. Clinical translation of amide proton transfer (APT) MRI for ischemic stroke: A systematic review (2003-2020)[J]. Quant Imaging Med Surg, 2021, 11(8): 3797-3811. |
[11] | ZAISS M, EHSES P, SCHEFFLER K. Snapshot-CEST: Optimizing spiral-centric-reordered gradient echo acquisition for fast and robust 3D CEST MRI at 9.4 T[J]. NMR Biomed, 2018, 31(4): e3879. |
[12] |
ZHOU J, BLAKELEY J O, HUA J, et al. Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging[J]. Magn Reson Med, 2008, 60(4): 842-849.
doi: 10.1002/mrm.21712 pmid: 18816868 |
[13] |
DESHMANE A, ZAISS M, LINDIG T, et al. 3D gradient echo snapshot CEST MRI with low power saturation for human studies at 3T[J]. Magn Reson Med, 2019, 81(4): 2412-2423.
doi: 10.1002/mrm.27569 pmid: 30431179 |
[14] |
KRISHNAMOORTHY G, NANGA R P R, BAGGA P, et al. High quality three-dimensional gagCEST imaging of in vivo human knee cartilage at 7 Tesla[J]. Magn Reson Med, 2017, 77(5): 1866-1873.
doi: 10.1002/mrm.26265 pmid: 27174078 |
[15] | HAN P, CHEEMA K, LEE H L, et al. Whole-brain steady-state CEST at 3 T using MR multitasking[J]. Magn Reson Med, 2022, 87(5): 2363-2371. |
[16] |
JONES C K, POLDERS D, HUA J, et al. In vivo three-dimensional whole-brain pulsed steady-state chemical exchange saturation transfer at 7 T[J]. Magn Reson Med, 2012, 67(6): 1579-1589.
doi: 10.1002/mrm.23141 pmid: 22083645 |
[17] |
SCHMITT B, ZAISS M, ZHOU J, et al. Optimization of pulse train presaturation for CEST imaging in clinical scanners[J]. Magn Reson Med, 2011, 65(6): 1620-1629.
doi: 10.1002/mrm.22750 pmid: 21337418 |
[18] |
ZAID ALKILANI A, CUKUR T, SARITAS E U. Fd-Net: An unsupervised deep forward-distortion model for susceptibility artifact correction in EPI[J]. Magn Reson Med, 2024, 91(1): 280-296.
doi: 10.1002/mrm.29851 pmid: 37811681 |
[19] |
LI H, FOX-NEFF K, VAUGHAN B, et al. Parallel EPI artifact correction (PEAC) for N/2 ghost suppression in neuroimaging applications[J]. Magn Reson Imaging, 2013, 31(6): 1022-1028.
doi: 10.1016/j.mri.2013.03.021 pmid: 23601363 |
[20] |
HAASE A, FRAHM J, MATTHAEI D, et al. FLASH imaging: Rapid NMR imaging using low flip-angle pulses. 1986[J]. J Magn Reson, 2011, 213(2): 533-541.
doi: 10.1016/j.jmr.2011.09.021 pmid: 22152368 |
[21] |
SUN P Z, CHEUNG J S, WANG E, et al. Fast multislice pH-weighted chemical exchange saturation transfer (CEST) MRI with unevenly segmented RF irradiation[J]. Magn Reson Med, 2011, 65(2): 588-594.
doi: 10.1002/mrm.22628 pmid: 20872859 |
[22] |
KIM H, PARK S, HU R, et al. 3D CEST MRI with an unevenly segmented RF irradiation scheme: A feasibility study in brain tumor imaging[J]. Magn Reson Med, 2023, 90(6): 2400-2410.
doi: 10.1002/mrm.29810 pmid: 37526017 |
[23] | 李建奇, 林江. 现代体部磁共振诊断学原理及技术分册[M]. 上海: 复旦大学出版社, 2022. |
[24] | HELD C, JUNKER D, WU M, et al. Intraindividual difference between supraclavicular and subcutaneous proton density fat fraction is associated with cold-induced thermogenesis[J]. Quant Imaging Med Surg, 2022, 12(5): 2877-2890. |
[25] |
ZHAO Y, YAN X, ZHANG Z, et al. Self-adapting multi-peak water-fat reconstruction for the removal of lipid artifacts in chemical exchange saturation transfer (CEST) imaging[J]. Magn Reson Med, 2019, 82(5): 1700-1712.
doi: 10.1002/mrm.27859 pmid: 31241219 |
[26] | HUANG J, LAI J H C, TSE K H, et al. Deep neural network based CEST and AREX processing: Application in imaging a model of alzheimer's disease at 3 T[J]. Magn Reson Med, 2022, 87(3): 1529-1545. |
[27] | 王志超. 化学交换饱和转移成像对比度优化及信号提取方法的研究[D]. 上海: 华东师范大学, 2021. |
[28] | HAACKE E M. Magnetic resonance imaging : Physical principles and sequence design[M]. New York: Wiley, 1999. |
[29] |
YUSHKEVICH P A, PIVEN J, HAZLETT H C, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability[J]. Neuroimage, 2006, 31(3): 1116-1128.
doi: 10.1016/j.neuroimage.2006.01.015 pmid: 16545965 |
[30] |
KIM M, GILLEN J, LANDMAN B A, et al. Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments[J]. Magn Reson Med, 2009, 61(6): 1441-1450.
doi: 10.1002/mrm.21873 pmid: 19358232 |
[31] |
ZHANG J, ZHU W, TAIN R, et al. Improved differentiation of low-grade and high-grade gliomas and detection of tumor proliferation using APT contrast fitted from Z-Spectrum[J]. Mol Imaging Biol, 2018, 20(4): 623-631.
doi: 10.1007/s11307-017-1154-y pmid: 29313159 |
[32] |
TIETZE A, BLICHER J, MIKKELSEN I K, et al. Assessment of ischemic penumbra in patients with hyperacute stroke using amide proton transfer (APT) chemical exchange saturation transfer (CEST) MRI[J]. NMR Biomed, 2014, 27(2): 163-174.
doi: 10.1002/nbm.3048 pmid: 24288260 |
[33] |
ZHU H, JONES C K, VAN ZIJL P C, et al. Fast 3D chemical exchange saturation transfer (CEST) imaging of the human brain[J]. Magn Reson Med, 2010, 64(3): 638-644.
doi: 10.1002/mrm.22546 pmid: 20632402 |
[34] |
MCMAHON M T, GILAD A A, ZHOU J, et al. Quantifying exchange rates in chemical exchange saturation transfer agents using the saturation time and saturation power dependencies of the magnetization transfer effect on the magnetic resonance imaging signal (QUEST and QUESP): pH calibration for poly-L-lysine and a starburst dendrimer[J]. Magn Reson Med, 2006, 55(4): 836-847.
pmid: 16506187 |
[35] | ZAISS M, ANGELOVSKI G, DEMETRIOU E, et al. QUESP and QUEST revisited-fast and accurate quantitative CEST experiments[J]. Magn Reson Med, 2018, 79(3): 1708-1721. |
[36] |
DESMOND K L, STANISZ G J. Understanding quantitative pulsed CEST in the presence of MT[J]. Magn Reson Med, 2012, 67(4): 979-990.
doi: 10.1002/mrm.23074 pmid: 21858864 |
[37] | SUN P Z, WANG Y, DAI Z, et al. Quantitative chemical exchange saturation transfer (qCEST) MRI-RF spillover effect-corrected omega plot for simultaneous determination of labile proton fraction ratio and exchange rate[J]. Contrast Media Mol Imaging, 2014, 9(4): 268-275. |
[38] | MCVICAR N, LI A X, GONCALVES D F, et al. Quantitative tissue pH measurement during cerebral ischemia using amine and amide concentration-independent detection (AACID) with MRI[J]. J Cereb Blood Flow Metab, 2014, 34(4): 690-698. |
[39] | JONES C K, HUANG A, XU J, et al. Nuclear overhauser enhancement (NOE) imaging in the human brain at 7 T[J]. NeuroImage, 2013, 77: 114-124. |
[40] | HEO H Y, ZHANG Y, LEE D H, et al. Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semi-solid magnetization transfer reference (EMR) signals: Application to a rat glioma model at 4.7 Tesla[J]. Magn Reson Med, 2016, 75(1): 137-149. |
[41] |
ZHOU J Y, ZAISS M, KNUTSSON L, et al. Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: Application to brain tumors[J]. Magn Reson Med, 2022, 88(2): 546-574.
doi: 10.1002/mrm.29241 pmid: 35452155 |
[42] |
GLANG F, DESHMANE A, PROKUDIN S, et al. DeepCEST 3T: Robust MRI parameter determination and uncertainty quantification with neural networks-application to CEST imaging of the human brain at 3T[J]. Magn Reson Med, 2020, 84(1): 450-466.
doi: 10.1002/mrm.28117 pmid: 31821616 |
[43] | WANG Z C, ZHANG J L, ZHAO Y, et al. CEST imaging of the abdomen with neural network fitting[J]. Chinese J Magn Reson, 2022, 39(1): 33-42. |
王志超, 张记磊, 赵羽, 等. 基于神经网络拟合的腹部化学交换饱和转移成像[J]. 波谱学杂志, 2022, 39(1): 33-42.
doi: 10.11938/cjmr20212903 |
|
[44] | SHI W C, JIN Z Y, YE Z. Fast multi-channel magnetic resonance imaging based on PCAU-Net[J]. Chinese J Magn Reson, 2023, 40(1): 39-51. |
施伟成, 金朝阳, 叶铮. 基于PCAU-Net的快速多通道磁共振成像方法[J]. 波谱学杂志, 2023, 40(1): 39-51.
doi: 10.11938/cjmr20222992 |
|
[45] | LI Y J, YANG X Y, YANG X M. Magnetic resonance image reconstruction of multi-scale residual Unet fused with attention mechanism[J]. Chinese J Magn Reson, 2023, 40(3): 307-319. |
李奕洁, 杨馨雨, 杨晓梅. 融合注意力机制的多尺度残差Unet的磁共振图像重建[J]. 波谱学杂志, 2023, 40(3): 307-319.
doi: 10.11938/cjmr20223040 |
|
[46] |
WINDSCHUH J, ZAISS M, EHSES P, et al. Assessment of frequency drift on CEST MRI and dynamic correction: Application to gagCEST at 7 T[J]. Magn Reson Med, 2019, 81(1): 573-582.
doi: 10.1002/mrm.27367 pmid: 29851141 |
[47] |
KASAHARA S, MIKI Y, MORI N, et al. Spin-echo T1-weighted imaging of the brain with interleaved acquisition and presaturation pulse at 3 T: A feasibility study before clinical use[J]. Acad Radiol, 2009, 16(7): 852-857.
doi: 10.1016/j.acra.2008.12.026 pmid: 19375955 |
[48] | DONOHO D L. Compressed sensing[J]. IEEE T Inform Theory, 2006, 52(4): 1289-1306. |
[49] | ZHAO Y, SUN C S, ZU Z L. Assignment of molecular origins of NOE signal at -3.5 ppm in the brain[J]. Magn Reson Med, 2023, 90(2): 673-685. |
[50] |
HUA J, JONES C K, BLAKELEY J, et al. Quantitative description of the asymmetry in magnetization transfer effects around the water resonance in the human brain[J]. Magn Reson Med, 2007, 58(4): 786-793.
pmid: 17899597 |
[1] | 徐真顺, 袁小涵, 黄子珩, 邵成伟, 武杰, 边云. 基于深度学习的胰腺黏液性和浆液性囊性肿瘤的多源特征分类模型[J]. 波谱学杂志, 2024, 41(1): 19-29. |
[2] | 唐德港,李红闯,刘小玲,石磊,李海东,叶朝辉,周欣. 1.5 T下高介电材料几何结构对发射场影响的仿真研究[J]. 波谱学杂志, 2022, 39(2): 155-162. |
[3] | 王振宇, 王颖珊, 毛瑾玲, 马伟伟, 路青, 石洁, 汪红志. 基于Dense-UNet++的关节滑膜磁共振图像分割[J]. 波谱学杂志, 2022, 39(2): 208-219. |
[4] | 马岩, 邢藏菊, 肖亮. 基于级联网络的膝关节图像分割与模型构建[J]. 波谱学杂志, 2022, 39(2): 184-195. |
[5] | 骆俊, 刘盛平, 杨兴, 王佳升, 李烨. 一种无磁化的5 T磁共振射频功率放大器设计[J]. 波谱学杂志, 2022, 39(2): 163-173. |
[6] | 张菊敏,陈世桢,周欣. 基于动态有机钆纳米颗粒的T1-T2双模态MRI造影剂[J]. 波谱学杂志, 2022, 39(1): 11-19. |
[7] | 王志超,张记磊,赵羽,华婷,汤光宇,李建奇. 基于神经网络拟合的腹部化学交换饱和转移成像[J]. 波谱学杂志, 2022, 39(1): 33-42. |
[8] | 王瀚苇,吴昊,田静,张俊峰,钟鹏,陈立朝,王舒楠. T2/FLAIR错配征的定量参数在评价较低级别胶质瘤分子分型的诊断价值[J]. 波谱学杂志, 2022, 39(1): 56-63. |
[9] | 肖龙,朱筱磊,韩叶清,陈世桢,周欣. 胶束型磁共振成像分子探针的设计与应用[J]. 波谱学杂志, 2021, 38(4): 474-490. |
[10] | 王崇武,黄曦,石磊,陈世桢,周欣. 组织蛋白酶B响应的超极化129Xe MRI探针对肺癌细胞的超灵敏探测[J]. 波谱学杂志, 2021, 38(3): 336-344. |
[11] | 胡赢丹,蔡悦,王旭霞,刘思婕,康彦,雷皓,林富春. 尼古丁易感的脑结构特征的磁共振成像研究[J]. 波谱学杂志, 2021, 38(3): 345-355. |
[12] | 闫士举,韩勇森,汤光宇. 一种用于前列腺区域分割的改进水平集算法[J]. 波谱学杂志, 2021, 38(3): 356-366. |
[13] | 贺红艳, 魏树峰, 王慧贤, 杨文晖. 矩阵梯度线圈研究现状与发展趋势[J]. 波谱学杂志, 2021, 38(1): 140-153. |
[14] | 辛红涛, 吴光耀, 文之, 雷皓, 林富春. 抗逆转录病毒治疗对艾滋病患者脑灰质体积的影响[J]. 波谱学杂志, 2021, 38(1): 69-79. |
[15] | 胡格丽, 邓晔辉, 王坤, 蒋田仔. 5G通信平台下的新型MRI系统架构展望[J]. 波谱学杂志, 2020, 37(4): 490-495. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||