1 |
PADORMO F , BEQIRI A , HAJNAL J V , et al. Parallel transmission for ultrahigh-field imaging[J]. NMR Biomed, 2016, 29 (9): 1145- 1161.
doi: 10.1002/nbm.3313
|
2 |
GRAESSLIN I , HOMANN H , BIEDERER , et al. A specific absorption rate prediction concept for parallel transmission MR[J]. Magn Reson Med, 2012, 68 (5): 1664- 1674.
doi: 10.1002/mrm.24138
|
3 |
GRAESSLIN I , VERNICKEI P , BÖRNERT P , et al. Comprehensive RF safety concept for parallel transmission MR[J]. Magn Reson Med, 2015, 74 (2): 589- 598.
doi: 10.1002/mrm.25425
|
4 |
VAN DEN BERGEN B , VAN DEN BERG C A T , BARTELS L W , et al. 7 Tesla body MRI: B1 shimming with simultaneous SAR reduction[J]. Phys Med Biol, 2007, 52 (17): 5429- 5441.
doi: 10.1088/0031-9155/52/17/022
|
5 |
ÖZTURKC N, ALBAYRAKS. Automatic segmentation of cartilage in high-field magnetic resonance images of the knee joint with an improved voxel-classification-driven region-growing algorithm using vicinity-correlated subsampling[J]. Comput Biol Med, 2016, 72, 90- 107.
|
6 |
TANG J S , MILLINGTON S , ACTON S T , et al. Surface extraction and thickness measurement of the articular cartilage from MR images using directional gradient vector flow snakes[J]. IEEE Trans Biomed Eng, 2006, 53 (5): 896- 907.
doi: 10.1109/TBME.2006.872816
|
7 |
WILLIAMS T G , HOLMES A P , WATERTON J C , et al. Anatomically corresponded regional analysis of cartilage in asymptomatic and osteoarthritic knees by statistical shape modelling of the bone[J]. IEEE Trans Med Imaging, 2010, 29 (8): 1541- 1559.
doi: 10.1109/TMI.2010.2047653
|
8 |
SHAN L , ZACH C , CHARLES C , et al. Automatic atlas-based three-label cartilage segmentation from MR knee images[J]. Med Image Anal, 2014, 18 (7): 1233- 1246.
doi: 10.1016/j.media.2014.05.008
|
9 |
ZHANG K L , LU W M , MARZILIANO P . Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies[J]. Magn Reson Imaging, 2013, 31 (10): 1731- 1743.
doi: 10.1016/j.mri.2013.06.005
|
10 |
LONG J, SHELHAMER E, DARRELL T, et al. Fully convolutional networks for semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
|
11 |
CHEN J C , PAPANDREOU G , KOKKIONS I , et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE T Pattern Anal, 2018, 40 (4): 834- 848.
doi: 10.1109/TPAMI.2017.2699184
|
12 |
AMBELLAN F , TACK A , EHLKE M , et al. Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the osteoarthritis initiative[J]. Med Image Anal, 2019, 52, 109- 118.
doi: 10.1016/j.media.2018.11.009
|
13 |
LIU F , ZHOU Z Y , JANG H , et al. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging[J]. Magn Reson Med, 2018, 79 (4): 2379- 2391.
doi: 10.1002/mrm.26841
|
14 |
ZHOU Z Y , ZHAO G Y , KIJOWSKI R , et al. Deep convolutional neural network for segmentation of knee joint anatomy[J]. Magn Reson Med, 2018, 80 (6): 2759- 2770.
doi: 10.1002/mrm.27229
|
15 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]//International Conference on MICCAI 2015, 2015: 234-241.
|
16 |
DONG H, YANG G, LIU F D, et al. Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks[C]//MIUA 2017: Medical Image Understanding and Analysis, 2017: 506-517.
|
17 |
XIAO X, LIAN S, LUO Z M, et al. Weighted Res-UNet for high-quality retina vessel segmentation[C]//9th International Conference on Information Technology in Medicine and Education (ITME), Hang Zhou, 2018: 327-331.
|
18 |
WENG Y , ZHOU T B , LI Y J , et al. NAS-Unet neural architecture search for medical image segmentation[J]. IEEE Access, 2019, 7, 44247- 44257.
doi: 10.1109/ACCESS.2019.2908991
|
19 |
NORMAN B , PEDOIA V , MAJUMDAR S , et al. Use of 2D U-Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry[J]. Radiology, 2018, 288 (2): 177- 185.
|
20 |
AMBELLAN F , TACK A , EHLKE M , et al. Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks[J]. Med Image Anal, 2019, 52, 109- 118.
doi: 10.1016/j.media.2018.11.009
|
21 |
BYRA M , WU M , ZHANG X D , et al. Knee menisci segmentation and relaxometry of 3D ultrashort echo time cones MR imaging using attention U-Net with transfer learning[J]. Magn Reson Med, 2020, 83 (3): 1109- 1122.
doi: 10.1002/mrm.27969
|
22 |
XIAO L , LOU Y K , ZHOU H Y . A U-Net network-based rapid construction of knee models for specific absorption rate estimation[J]. Chinese J Magn Reson, 2020, 27 (2): 144- 151.
|
|
肖亮, 娄煜堃, 周航宇. 用于SAR估计的基于U-Net网络的快速膝关节模型重建[J]. 波谱学杂志, 2020, 27 (2): 144- 151.
|
23 |
LIN T Y , GOYAL P , GIRSHICK R , et al. Focal loss for dense object detection[J]. IEEE T Pattern Anal, 2020, 42 (2): 318- 327.
doi: 10.1109/TPAMI.2018.2858826
|
24 |
HOMANN H , BÖRNERT P , EGGERS H , et al. Toward individualized SAR models and in vivo validation[J]. Magn Reson Med, 2011, 66 (6): 1767- 1776.
doi: 10.1002/mrm.22948
|
25 |
WOLF S , DIEHL D , GEBHARDT M , et al. SAR simulations for high-field MRI: how much detail, effort, and accuracy is needed?[J]. Magn Reson Med, 2013, 69 (4): 1157- 1168.
doi: 10.1002/mrm.24329
|
26 |
COLLINS C M , SMITH M B . Spatial resolution of numerical models of manand calculated specific absorption rate using the FDTD method: a study at 64 MHz in a magnetic resonance imaging coil[J]. Magn Reson Imaging, 2003, 18 (3): 383- 388.
doi: 10.1002/jmri.10359
|
27 |
PETERSON D M , CARRUTHERS C E , WOLVERTON B L , et al. Application of a birdcage coil at 3 Tesla to imaging of the human knee using MRI[J]. Magn Reson Med, 1999, 42 (2): 215- 221.
doi: 10.1002/(SICI)1522-2594(199908)42:2<215::AID-MRM1>3.0.CO;2-8
|
28 |
BYRA M , WU M , ZHANG X D , et al. Knee menisci segmentation and relaxometry of 3D ultrashort echo time cones MR imaging using attention U‐Net with transfer learning[J]. Magn Reson Med, 2019, 83 (3): 1109- 1122.
|
29 |
ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. Unet++: A nest u-net architecture for medical image segmentation[C]//DLMIA 2018, ML-CDS 2018: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 2018, 11045: 3-11.
|
30 |
LIU K W , LIU Z L , WANG X Y , et al. Prostate cancer diagnosis based on cascaded convolutional neural networks[J]. Chinese J Magn Reson, 2020, 37 (2): 152- 161.
|
|
刘可文, 刘紫龙, 汪香玉, 等. 基于级联卷积神经网络的前列腺磁共振图像分类[J]. 波谱学杂志, 2020, 37 (2): 152- 161.
|