波谱学杂志 ›› 2022, Vol. 39 ›› Issue (3): 243-257.doi: 10.11938/cjmr20222976
刘元元1,杨育昕1,2,朱庆永3,崔卓须3,程静1,刘聪聪1,梁栋1,3,朱燕杰1,*()
收稿日期:
2022-02-16
出版日期:
2022-09-05
发布日期:
2022-04-28
通讯作者:
朱燕杰
E-mail:yj.zhu@siat.ac.cn
基金资助:
Yuan-yuan LIU1,Yu-xin YANG1,2,Qing-yong ZHU3,Zhuo-xu CUI3,Jing CHENG1,Cong-cong LIU1,Dong LIANG1,3,Yan-jie ZHU1,*()
Received:
2022-02-16
Online:
2022-09-05
Published:
2022-04-28
Contact:
Yan-jie ZHU
E-mail:yj.zhu@siat.ac.cn
摘要:
定量磁共振成像(MRI)可量化组织特性,是科学研究和临床研究的重要工具.旋转坐标系下的自旋-晶格弛豫时间(T1ρ)能反映水与大分子之间的低频交互作用,在3 T及以上的高场环境下,T1ρ受水和不稳定质子之间化学交换的影响较大,通过测量弛豫率随自旋锁定场强度的变化而得到其分布情况(T1ρ散布),可用于分析和量化质子的交换过程,因此T1ρ散布是一种重要的定量MRI技术.然而,获得不同自旋锁定场强下T1ρ加权图像的时间过长,限制了其应用范围.针对这一问题,本研究提出一种基于多弛豫信号补偿策略的快速T1ρ散布成像方法.该方法将不同锁定频率下的T1ρ加权图像补偿到同一信号强度水平,并结合低秩与稀疏建立重建模型.实验结果表明,该方法在加速倍数高达7倍时仍获得了较好的重建结果.
中图分类号:
刘元元, 杨育昕, 朱庆永, 崔卓须, 程静, 刘聪聪, 梁栋, 朱燕杰. 基于多弛豫信号补偿的快速磁共振T1ρ散布成像[J]. 波谱学杂志, 2022, 39(3): 243-257.
Yuan-yuan LIU, Yu-xin YANG, Qing-yong ZHU, Zhuo-xu CUI, Jing CHENG, Cong-cong LIU, Dong LIANG, Yan-jie ZHU. Accelerating T1ρ Dispersion Imaging with Multiple Relaxation Signal Compensation[J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 243-257.
表1
各加速倍数下,各方法重建的所有自旋锁定频率下T1ρ加权图像的nRMSE、PSNR及SSIM的均值±标准差对比
R=4 | R=5 | R=6 | R=7 | ||
nRMSE | L+S | 0.0538±0.0144 | 0.0675±0.0187 | 0.0835±0.0234 | 0.1010±0.0232 |
BCS | 0.0439±0.0180 | 0.0466±0.0117 | 0.0562±0.0161 | 0.0630±0.0166 | |
T1ρ-DISC | 0.0349±0.0115 | 0.0383±0.0147 | 0.0439±0.0169 | 0.0483±0.0187 | |
PSNR | L+S | 17.1353±0.2069 | 17.0752±0.2686 | 16.7938±0.3227 | 16.5361±0.3010 |
BCS | 17.3670±0.2014 | 17.4463±0.2431 | 17.4215±0.2504 | 17.3205±0.2271 | |
T1ρ-DISC | 17.5279±0.1981 | 17.6060±0.2079 | 17.5362±0.2544 | 17.4039±0.2585 | |
SSIM | L+S | 0.6785±0.0193 | 0.6408±0.0229 | 0.6033±0.0261 | 0.5757±0.0217 |
BCS | 0.6800±0.0529 | 0.6727±0.0184 | 0.6481±0.0219 | 0.6360±0.0210 | |
T1ρ-DISC | 0.7148±0.0179 | 0.7035±0.0223 | 0.6916±0.0255 | 0.6853±0.0268 |
1 |
DEONI S C, PETERS T M, RUTT B KHigh-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2[J].Magn Reson Med,2005,53(1):237-241.
doi: 10.1002/mrm.20314 |
2 | GANZETTI M, WENDEROTH N, MANTINI DWhole brain myelin mapping using T1-and T2-weighted MR imaging data[J].Front Hum Neurosci,2014,8,671. |
3 |
KNIGHT M J, MCCANN B, TSIVOS D, et alQuantitative T2 mapping of white matter: applications for ageing and cognitive decline[J].Phys Med Biol,2016,61(15):5587-5605.
doi: 10.1088/0031-9155/61/15/5587 |
4 |
SENER R NDiffusion MRI: apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders based on ADC values[J].Comput Med Imaging Graph,2001,25(4):299-326.
doi: 10.1016/S0895-6111(00)00083-5 |
5 |
TAYLOR A J, SALERNO M, DHARMAKUMAR R, et alT1 Mapping: basic techniques and clinical applications[J].JACC Cardiovasc Imaging,2016,9(1):67-81.
doi: 10.1016/j.jcmg.2015.11.005 |
6 |
ALI S O, FESSAS P, KAGGIE J D, et alEvaluation of the sensitivity of R1ρ MRI to pH and macromolecular density[J].Magn Reson Imaging,2019,58,156-161.
doi: 10.1016/j.mri.2019.02.004 |
7 | WANG Y X, ZHANG Q, LI X, et alT1ρ magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging[J].Quant Imaging Med Surg,2015,5(6):858-885. |
8 |
LI X, WYATT C, RIVOIRE J, et alSimultaneous acquisition of T1ρ and T2 quantification in knee cartilage: repeatability and diurnal variation[J].J Magn Reson Imaging,2014,39(5):1287-1293.
doi: 10.1002/jmri.24253 |
9 | WANG Y X, YUAN JEvaluation of liver fibrosis with T1ρ MR imaging[J].Quant Imaging Med Surg,2014,4(3):152-155. |
10 |
HARIS M, SINGH A, CAI K, et alT1ρ MRI in Alzheimer's disease: detection of pathological changes in medial temporal lobe[J].J Neuroimaging,2011,21(2):e86-90.
doi: 10.1111/j.1552-6569.2010.00467.x |
11 |
COBB J G, XIE J, GORE J CContributions of chemical exchange to T1ρ dispersion in a tissue model[J].Magn Reson Med,2011,66(6):1563-1571.
doi: 10.1002/mrm.22947 |
12 |
COBB J G, XIE J, GORE J CContributions of chemical and diffusive exchange to T1ρ dispersion[J].Magn Reson Med,2013,69(5):1357-1366.
doi: 10.1002/mrm.24379 |
13 |
LUSTIG M, DONOHO D, PAULY J MSparse MRI: the application of compressed sensing for rapid MR imaging[J].Magn Reson Med,2007,58(6):1182-1195.
doi: 10.1002/mrm.21391 |
14 |
BHAVE S, LINGALA S G, JOHNSON C P, et alAccelerated whole-brain multi-parameter mapping using blind compressed sensing[J].Magn Reson Med,2016,75(3):1175-1186.
doi: 10.1002/mrm.25722 |
15 |
PANDIT P, RIVOIRE J, KING K, et alAccelerated T1ρ acquisition for knee cartilage quantification using compressed sensing and data-driven parallel imaging: a feasibility study[J].Magn Reson Med,2016,75(3):1256-1261.
doi: 10.1002/mrm.25702 |
16 |
KAMESH IYER S, MOON B, HWUANG E, et alAccelerated free-breathing 3D T1ρ cardiovascular magnetic resonance using multicoil compressed sensing[J].J Cardiovasc Magn R,2019,21,5.
doi: 10.1186/s12968-018-0507-2 |
17 | 李嫣嫣, 李律, 李雪松, 等基于同伦l0范数最小化重建的三维动态磁共振成像[J].波谱学杂志,2022,39(1):20-32. |
LI Y Y, LI L, LI X S, et al3D dynamic MRI with homotopic l0 minimization rconstruction[J].Chinese J Magn Reson,2022,39(1):20-32. | |
18 | 詹嘉莹, 涂章仁, 杜晓凤, 等基于低秩矩阵的非均匀采样NMR波谱重建进展[J].波谱学杂志,2020,37(3):255-272. |
ZHAN J Y, TU Z R, DU X F, et alProgresses on low-rank reconstruction for non-uniformly sampled NMR spectra[J].Chinese J Magn Reson,2020,37(3):255-272. | |
19 | HALDAR J P, LIANG Z P. Low-rank approximations for dynamic imaging[C]// 2011 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2011: 1052-1055. |
20 |
JACOB M, MANI M P, YE J CStructured low-rank algorithms: theory, magnetic resonance applications, and links to machine learning[J].IEEE Signal Process Mag,2020,37(1):54-68.
doi: 10.1109/MSP.2019.2950432 |
21 |
ZIBETTI M V W, SHARAFI A, OTAZO R, et alAccelerating 3D- T1ρ mapping of cartilage using compressed sensing with different sparse and low rank models[J].Magn Reson Med,2018,80(4):1475-1491.
doi: 10.1002/mrm.27138 |
22 |
PENG X, YING L, LIU Y Y, et alAccelerated exponential parameterization of T2 relaxation with model-driven low rank and sparsity priors (MORASA)[J].Magn Reson Med,2016,76(6):1865-1878.
doi: 10.1002/mrm.26083 |
23 |
ZHU Y J, LIU Y Y, YING L, et alSCOPE: signal compensation for low-rank plus sparse matrix decomposition for fast parameter mapping[J].Phys Med Biol,2018,63(18):185009.
doi: 10.1088/1361-6560/aadb09 |
24 |
BOUWMANS T, SOBRAL A, JAVED S, et alDecomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset[J].Comput Sci Rev,2017,23,1-71.
doi: 10.1016/j.cosrev.2016.11.001 |
25 |
ONG F, LUSTIG MBeyond low rank plus sparse: multiscale low rank matrix decomposition[J].IEEE J Sel Topics Signal Process,2016,10(4):672-687.
doi: 10.1109/JSTSP.2016.2545518 |
26 | HUANG W Q, KE Z W, CUI Z X, et alDeep low-rank plus sparse network for dynamic MR imaging[J].Med Image Anal,2021,73. |
27 |
OTAZO R, CANDES E, SODICKSON D KLow-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components[J].Magn Reson Med,2015,73(3):1125-1136.
doi: 10.1002/mrm.25240 |
28 |
PETROV A Y, HERBST M, STENGER V AImproving temporal resolution in fMRI using a 3D spiral acquisition and low rank plus sparse (L plus S) reconstruction[J].Neuroimage,2017,157,660-674.
doi: 10.1016/j.neuroimage.2017.06.004 |
29 |
PRUESSMANN K P, WEIGER M, BORNERT P, et alAdvances in sensitivity encoding with arbitrary k-space trajectories[J].Magn Reson Med,2001,46(4):638-651.
doi: 10.1002/mrm.1241 |
30 | MORE J JThe Levenberg-Marquardt algorithm: implementation and theory[J].Numerical analysis,1978,105-116. |
31 |
MITREA B G, KRAFFT A J, SONG R, et alPaired self-compensated spin-lock preparation for improved T1ρ quantification[J].J Magn Reson,2016,268,49-57.
doi: 10.1016/j.jmr.2016.04.017 |
32 |
RICH A, GREGG M, JIN N, et alCartesian sampling with variable density and Adjustable temporal resolution (CAVA)[J].Magn Reson Med,2020,83(6):2015-2025.
doi: 10.1002/mrm.28059 |
33 |
WANG Z, BOVIK A C, SHEIKH H R, et alImage quality assessment: from error visibility to structural similarity[J].IEEE Trans Image Process,2004,13(4):600-612.
doi: 10.1109/TIP.2003.819861 |
34 |
MASON A, RIOUX J, CLARKE SComparison of objective image quality metrics to expert radiologists' scoring of diagnostic quality of MR Images[J].IEEE Trans Med Imaging,2020,39(4):1064-1072.
doi: 10.1109/TMI.2019.2930338 |
35 |
ZHU Y, LIU Y, YING L, et alA 4-minute solution for submillimeter whole-brain T1ρ quantification[J].Magn Reson Med,2021,85(6):3299-3307.
doi: 10.1002/mrm.28656 |
36 |
KORZHNEV D M, OREKHOV V Y, KAY L EOff-resonance R1ρ NMR studies of exchange dynamics in proteins with low spin-lock fields: An application to a fyn SH3 domain[J].J Am Chem Soc,2005,127(2):713-721.
doi: 10.1021/ja0446855 |
37 | 王婉婷, 苏适, 贾森, 等基于虚拟线圈和卷积神经网络的多层同时激发图像重建[J].波谱学杂志,2020,37(4):407-421. |
WANG W T, SU S, JIA S, et alReconstruction of simultaneous multi-slice MRI data by combining virtual conjugate coil technology and convolutional neural network[J].Chinese J Magn Reson,2020,37(4):407-421. |
[1] | 常晓,蔡昕,杨光,聂生东. 生成对抗网络在医学图像转换领域的应用[J]. 波谱学杂志, 2022, 39(3): 366-380. |
[2] | 刘莲花,蒋滨,陈代谢,苏驰. 超导磁共振仪器设备国产化现状及挑战[J]. 波谱学杂志, 2022, 39(3): 345-355. |
[3] | 邱先鑫,韩旭,汪耀,丁伟娜,孙雅文,周滟,雷皓,林富春. 网络游戏障碍人群大脑功能网络rich club结构的改变[J]. 波谱学杂志, 2022, 39(3): 258-266. |
[4] | 张怡, 楼飞洋, 方可, 陈高, 张孝通. 分子影像新技术——氘代谢波谱及成像的综述与展望[J]. 波谱学杂志, 2022, 39(3): 356-365. |
[5] | 廖文姗, 徐俊成, 姚守权, 李建奇, 蒋瑜. 基于双参考源的数字磁共振控制台相位相干技术[J]. 波谱学杂志, 2022, 39(3): 327-336. |
[6] | 王颖珊, 邓奥琦, 毛瑾玲, 朱中旗, 石洁, 杨光, 马伟伟, 路青, 汪红志. 基于3D VNetTrans的膝关节滑膜磁共振图像自动分割[J]. 波谱学杂志, 2022, 39(3): 303-315. |
[7] | 陈小明, 赵修超, 孙献平, 谢军帅, 李海东, 韩叶清, 刘小玲, 陈琪, 周欣. 超极化129Xe自动收集-升华装置研究[J]. 波谱学杂志, 2022, 39(3): 316-326. |
[8] | 周勤, 王远军. 基于变分推断的磁共振图像群组配准[J]. 波谱学杂志, 2022, 39(3): 291-302. |
[9] | 李笛, 霍雷, 万梦云, 贾宁阳, 王丽嘉. 基于新型支持向量机的影像组学在肝脏结节分类中的应用[J]. 波谱学杂志, 2022, 39(3): 278-290. |
[10] | 李盼 房德磊 张峻霞 马得贝. 基于图像质量评价的手术机器人系统磁共振兼容性分析方法[J]. 波谱学杂志, 0, (): 0-0. |
[11] | 郭江峰 MACMILLAN Bryce BALCOM Bruce. 基于T1-T2*弛豫相关的聚氨酯橡胶相态结构和动力学特征[J]. 波谱学杂志, 0, (): 0-0. |
[12] | 师光辉 肖立志 廖广志 罗嗣慧 侯学理 卢亚普. 低场核磁共振仪器振铃抑制新方法及其电路实现[J]. 波谱学杂志, 0, (): 0-0. |
[13] | 陈雷,刘红兵,刘惠丽. 定量NMR中多种检出限评估方法的比较[J]. 波谱学杂志, 2022, 39(2): 230-242. |
[14] | 唐德港,李红闯,刘小玲,石磊,李海东,叶朝辉,周欣. 1.5 T下高介电材料几何结构对发射场影响的仿真研究[J]. 波谱学杂志, 2022, 39(2): 155-162. |
[15] | 胡涵,王伟宇,徐君,邓风. Pd-Sn双金属催化剂催化1, 3-丁二烯加氢反应的仲氢诱导极化研究[J]. 波谱学杂志, 2022, 39(2): 133-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||