[1] Durante M, Manti L. Human response to high-background radiation environments on earth and in space
[J]. Adv Space Res, 2008, 42: 999-1 000.
[2] Nelson G A. Fundamental space radiobiology[J]. Gravit Space Biol Bull, 2003, 16: 29-36.
[3] Shukitt-Hale B, Gemma C, Amanda N C, et al. Exposure to 56Fe irradiation accelerates normal brain aging and produces deficits in spatial learning and memory[J]. Adv Space Res, 2007, 39: 1 087-1 092.
[4] Durante M, Ando K, Furusawa Y, et al. Complex chromosomal rearrangements induced in vivo by heavy ions. Cytogenet Genome Res, 2004, 104 (1-4): 240-244.
[5] Peter G, Marcelo E V. Cytotoxic and cell cycle effects in human neuronal progenitor cells exposed to 1 GeV/nFe ions[J]. Adv Space Res, 2007, 39: 1 004-1 010.
[6] Sannita W G, Acquaviva M, Ball S L, et al. Effects of heavy ions on visual function and electrophysiology of rodents: the ALTEA-MICE project[J]. Adv Space Res, 2004, 33: 1 347-1 351.
[7] Sannita W G, Narici L, Picozza P. Positive visual phenomena in space: A scientific case and a safety issue in space travel[J]. Vision Res, 2006, 46: 2 159-2 165.
[8] Kiefer J, Der S, Justus L U. Mutagenic effects of heavy charged particles[J]. J Radiat Res, 2002, 43(Suppl.): S21-S25.
[9] Siuzdak G. Biochemistry’s new look[J]. Nature, 2008, 455: 697-700.
[10] Tang H R, Wang Y L. Metabonomics: a Revolution in Progress[J]. Prog Biochem Biophys, 2006, 33(5): 401-417.
[11] Nicholson J K, Lindon J C, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data
[J]. Xenobiotica, 1999, 29(11): 1 181-1 189.
[12] Fiehn O, Kopka J, Dormann P, et al. Metabolite profiling for plant functional genomics[J]. Nat Biotechnol, 2000, 18(11): 1 157-1 161.
[13] Pears M R, Cooper J D, Mitchison H M, et al. High resolution 1H NMR-based metabolomics indicates a neurotransmitter cycling deficit in cerebral tissue from a mouse model of batten disease[J]. J Bio Chem, 2005, 280(52): 42 508-42 514.
[14] Ignasi B, Rafael F M, David C D, et al. Alzheimer’s disease beyond the genomic era: nuclear magnetic resonance(NMR) spectroscopy-based metabolomics[J]. J Cell Mol Med, 2008, 12(5): 1 477-1 485.
[15] Moussa C E -H, Rae C, Bubb W A, et al. Inhibitors of glutamate transport modulate distinct patterns in brain metabolism[J]. J Neuroscience Res, 2007, 85: 342-350.
[16] Yoshida H, Yamazaki J, Ozawa S, et al. Advantage of LC-MS metabolomics methodology targeting hydrophilic compounds in the studies of fermented food samples[J]. J Agric Food Chem, 2009, 57(4): 1 119-1 126.
[17] Zha W J, Rubin-Pitel S B, Shao Z Y, et al. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering[J]. Metab Eng, 2009, 11: 192-198.
[18] Miller M G. Environmental metabolomics: a SWOT analysis (Strengths, Weaknesses, Opportunities, and Threats)[J]. J Proteome Res, 2007, 6: 540-545.
[19] Eleanor A B, Polly Y C. A review of ground-based heavy ion radiobiology relevant to space radiation risk assessment: Cataracts and CNS effects[J]. Adv Space Res, 2007, 40: 1 307-1 319.
[20] Rabin B M, Joseph J A, Shukitt-Hale B. Heavy particle irradiation, neurochemistry and behavior: thresholds, doseresponse curves and recovery of function[J]. Adv Space Res, 2004, 33: 1 330-1 333.
[21] Rabin B M, Joseph J A, Shukitt-Hale B, et al. Effects of exposure to heavy particles on a behavior mediated by the dopaminergic system[J]. Adv Space Res, 2000, 25(10): 2 065-2 074.
[22] Shukitt-Hale B, Gema C, Cantuti-Castelvetri I, et al. Cognitive deficts induced by 56Fe radiation exposure[J]. Adv Space Res, 2003, 31(1): 119-126.
[23] Belle J E L, Harris N G, Williams S R, et al. A comparision of cell and tissue extraction techniques using highresolution 1H NMR spectroscopy[J]. NMR Biomed, 2002, 15: 37-44.
[24] Sonnewald U, Petersen S B, Krane J, et al. 1H NMR study of cortex neurons and cerebellar granule cells on microcarriers and their PCA extracts: lactate production under hypoxia[J]. Magn Reson Med, 1992, 23: 166-171.
[25] Pears M R, Cooper J D, Mitchison H M, et al. High resolution 1H NMR-based metabolomics indicates a neurotransmitter cycling deficit in cerebral tissue from a mouse model of Batten disease[J]. J Biol Chem, 2005, 280: 42 508-42 514.
[26] Yap I K S, Clayton T A, Tang H R, et al. An integrated metabonomic approach to describe temporal metabolic disregulation induced in the rat by the model hepatotoxin allyl formate[J]. J Proteome Res, 2006, 5: 2 675-2 684.
[27] Zhang X R, Liu H L, Wu J F, et al. Metabonomic alterations in hippocampus, temporal and prefrontal cortex with age in rats[J]. Neurochem Int, 2009, 54: 481-487.
[28] Mark R V, Bruce G L, Marion G M, et al. An NMR metabolomic investigation of early metabolic disturbances following traumatic brain injury in a mammalian model[J]. NMR Biomed, 2005, 18: 507-516.
[29] Spoerri P E. Neurotrophic effects of GABA in cultures of embryonic chick brain and retina[J]. Synapse, 1988, 2(1): 11-22.
|