[1] VILLARINO A V, KANNO Y, O'SHEA J J. Mechanisms and consequences of JAK-STAT signaling in the immune system[J]. Nat Immunol, 2017, 18(4):374-384. [2] DODINGTON D W, DESAI H R, WOO M. JAK/STAT-Emerging players in metabolism[J]. Trends Endocrinol Metab, 2018, 29(1):55-65. [3] O'SHEA J J, PLENGE R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease[J]. Immunity, 2012, 36(4):542-550. [4] MOH A, ZHANG W, YU S, et al. STAT3 sensitizes insulin signaling by negatively regulating glycogen synthase kinase -3 beta[J]. Diabetes, 2008, 57(5):1227-1235. [5] CORBIT K C, CAMPOREZ J P, TRAN J L, et al. Adipocyte JAK2 mediates growth hormone-induced hepatic insulin resistance[J]. JCI Insight, 2017, 2(3):e91001. [6] CERNKOVICH E R, DENG J, BOND M C, et al. Adipose-specific disruption of signal transducer and activator of transcription 3 increases body weight and adiposity[J]. Endocrinology, 2008, 149(4):1581-1590. [7] KALENECKER D, MUELLER K M, BENEDIKT P, et al. Adipocyte STAT5 deficiency promotes adiposity and impairs lipid mobilisation in mice[J]. Diabetologia, 2017, 60(2):296-305. [8] LEE E B, FLEISCHMANN R, HALL S, et al. Tofacitinib versus methotrexate in rheumatoid arthritis[J]. N Engl J Med, 2014, 370(25):2377-2386. [9] WINTHROP K. The emerging safety profile of JAK inhibitors in rheumatic disease[J]. Nat Rev Rheumatol, 2017, 13(5):320. [10] NICHOLSON J K, WILSON I D. Opinion:understanding ‘global’ systems biology:metabonomics and the continuum of metabolism[J]. Nat Rev Drug Discov, 2003, 2(8):668-676. [11] REAGAN-SHAW S, NIHAL M, AHMAD N. Dose translation from anima to human studies revisited[J]. FASEB J, 2008, 22(3):659-661. [12] KONG L Y, ABOU-GHAZAL M K, WEI J, et al. A novel inhibitor of signal transducers and activators of transcription 3 activation is efficacious against established central nervous system melanoma and inhibits regulatory T cells[J]. Clin Cancer Res, 2008, 14(18):5759-5768. [13] CRAIG A, CLOARCO O, HOLMES E, et al. Scaling and normalization effects in NMR spectroscopic metabonomic data sets[J]. Anal Ch em, 2006, 78(7):2262-267. [14] GOVINDARAJU V, YOUNG K, MAUDSLEY A A. Proton NMR chemical shifts and coupling constants for brain metabolites[J]. NMR Biomed, 2000, 13(3):129-153. [15] MAGNI G, AMICI A, EMANUELLI M, et al. Enzymology of NAD+ homeostasis in man[J]. Cell Mol Life Sci, 2004, 61(1):19-34. [16] PRZYGODZKI T, KAZMIERCZAK P, SIKORA J, et al. 1-methylnicotinamide effects on the selected markers of endothelial function, inflammation and haemostasis in diabetic rats[J]. Eur J Pharmacol, 2010, 640(1-3):157-162. [17] MATEUSZUK L, JASZTAL A, MASLAK E, et al. Anti-atherosclerotic effects of 1-methylnicotinamide in Apolipoprotein E/Low-Density Lipoprotein Receptor-Deficient mice:a comparison with nicotinic acid[J]. J Pharmacol Exp Ther, 2016, 356(2):514-524. [18] STRÖM K, MORALES-ALAMO D, OTTOSSON F, et al. N1-methylnicotinamide is a signalling molecule produced in skeletal muscle coordinating energy metabolism[J]. Sci Rep, 2018, 8(1):3016. [19] VAN DER BLIEK A M, SEDENSKY M M, MORGAN P G. Cell Biology of the Mitochondrion[J]. Genetics, 2017, 207(3):843-871. [20] DELAVAL E, PERICHON M, FRIGUET B. Age-related impairment of mitochondrial matrix aconitase and ATP-stimulated protease in rat liver and heart[J]. Eur J Biochem, 2004, 271(22):4559-4564. |