1 |
UGURBIL K Imaging at ultrahigh magnetic fields: history, challenges, and solutions[J]. Neuroimage, 2018, 168, 7-32.
doi: 10.1016/j.neuroimage.2017.07.007
|
2 |
YANG Q X, WANG J, ZHANG X, et al Analysis of wave behavior in lossy dielectric samples at high field[J]. Magn Reson Med, 2002, 47 (5):982-989.
doi: 10.1002/mrm.10137
|
3 |
SCHICK F Whole-body MRI at high field: technical limits and clinical potential[J]. Eur Radiol, 2005, 15 (5):946-959.
doi: 10.1007/s00330-005-2678-0
|
4 |
DIETRICH O, REISER M F, SCHOENBERG S O Artifacts in 3-T MRI: Physical background and reduction strategies[J]. Eur J Radiol, 2008, 65 (1):29-35.
doi: 10.1016/j.ejrad.2007.11.005
|
5 |
KANGARLU A, BAERTLEIN B A, LEE R, et al Dielectric resonance phenomena in ultra high field MRI[J]. J Comput Assist Tomogr, 1999, 23 (6):821-831.
doi: 10.1097/00004728-199911000-00003
|
6 |
HUANG Q H, GAO Y, XIN X G Study on the law of B1 field homogeneity and SAR inside human body varying with field strength at high and ultra-high field MR[J]. Chin J Biological Eng, 2013, 32 (1):21-27.
doi: 10.3969/j.issn.0258-8021.2013.01.004
|
|
黄绮华, 高勇, 辛学刚 高场和超高场MR下人体内B1场均匀性及SAR随场强变化规律的研究[J]. 中国生物医学工程学报, 2013, 32 (1):21-27.
doi: 10.3969/j.issn.0258-8021.2013.01.004
|
7 |
OSCH M J P V, WEBB A G Safety of ultra-high field MRI: What are the specific risks?[J]. Curr Radiol Rep, 2014, 2 (8):1-8.
|
8 |
DOTY F D, ENTZMINGER G, KULKARNI J, et al Radio frequency coil technology for small-animal MRI[J]. NMR Biomed, 2007, 20 (3):304-325.
doi: 10.1002/nbm.1149
|
9 |
GULSEN G, MUFTULER L T, NALCIOGLU O A double end-cap birdcage RF coil for small animal whole body imaging[J]. J Magn Reson, 2002, 156 (2):309-312.
doi: 10.1006/jmre.2002.2547
|
10 |
DARDZINSKI B J, LI S H, COLLINS C M, et al A birdcage coil tuned by RF shielding for application at 9.4 T[J]. J Magn Reson, 1998, 131 (1):32-38.
doi: 10.1006/jmre.1997.1334
|
11 |
LEE K H, CHENG M C, CHAN K C, et al Performance of large-size superconducting coil in 0.21 T MRI system[J]. IEEE Trans Biomed Eng, 2004, 51 (11):2024-2030.
doi: 10.1109/TBME.2004.831539
|
12 |
LIN I T, YANG H C, HSIEH C W, et al Human hand imaging using a 20 cm high-temperature superconducting coil in a 3 T magnetic resonance imaging system[J]. J Appl Phys, 2010, 107 (12):124701.
doi: 10.1063/1.3431538
|
13 |
LIAO Z W, CHEN J F, YANG C S, et al A design scheme for 1H/31P dual-nuclear parallel MRI coil[J]. Chinese J Magn Reson, 2020, 37 (3):273-282.
|
|
廖志文, 陈俊飞, 杨春升, 等 1H/31P双核并行磁共振成像线圈的研究与设计[J]. 波谱学杂志, 2020, 37 (3):273-282.
|
14 |
FENG T, CHEN J F, ZHANG Z, et al A design of short dead-time RF coil and RF switch for low-field NMR[J]. Chinese J Magn Reson, 2021, 38 (1):1-11.
|
|
冯涛, 陈俊飞, 张震, 等 低场核磁共振短死时间射频线圈与射频开关的设计[J]. 波谱学杂志, 2021, 38 (1):1-11.
|
15 |
WEBB A G, VAN DE MOORTELE P F The technological future of 7 T MRI hardware[J]. NMR Biomed, 2016, 29 (9):1305-1315.
doi: 10.1002/nbm.3315
|
16 |
ANDREYCHENKO A, BLUEMINK J J, RAAIJMAKERS A J E, et al Improved RF performance of travelling wave MR with a high permittivity dielectric lining of the bore[J]. Magn Reson Med, 2013, 70 (3):885-894.
doi: 10.1002/mrm.24512
|
17 |
YANG Q X, MAO W, WANG J, et al Manipulation of image intensity distribution at 7.0 T: Passive RF shimming and focusing with dielectric materials[J]. J Magn Reson Imaging, 2006, 24 (1):197-202.
doi: 10.1002/jmri.20603
|
18 |
FRANKLIN K M, DALE B M, MERKLE E M Improvement in B1-inhomogeneity artifacts in the abdomen at 3 T MR imaging using a radiofrequency cushion[J]. J Magn Reson Imaging, 2008, 27 (6):1443-1447.
doi: 10.1002/jmri.21164
|
19 |
DE HEER P, BRINK W M, KOOIJ B J, et al Increasing signal homogeneity and image quality in abdominal imaging at 3 T with very high permittivity materials[J]. Magn Reson Med, 2012, 68 (4):1317-1324.
doi: 10.1002/mrm.24438
|
20 |
ZIVKOVIC I, TEEUWISSE W, SLOBOZHANYUK A, et al High permittivity ceramics improve the transmit field and receive efficiency of a commercial extremity coil at 1.5 tesla[J]. J Magn Reson, 2019, 299, 59-65.
doi: 10.1016/j.jmr.2018.12.013
|
21 |
SICA C T, RUPPRECHT S, HOU R J, et al Toward whole-cortex enhancement with a ultrahigh dielectric constant helmet at 3 T[J]. Magn Reson Med, 2020, 83 (3):1123-1134.
doi: 10.1002/mrm.27962
|
22 |
LEE B Y, ZHU X H, RUPPRECHT S, et al Large improvement of RF transmission efficiency and reception sensitivity for human in vivo P-31 MRS imaging using ultrahigh dielectric constant materials at 7 T[J]. Magn Reson Imaging, 2017, 42, 158-163.
doi: 10.1016/j.mri.2017.07.019
|
23 |
RUPPRECHT S, SICA C T, CHEN W, et al Improvements of transmit efficiency and receive sensitivity with ultrahigh dielectric constant (uHDC) ceramics at 1.5 T and 3 T[J]. Magn Reson Med, 2018, 79 (5):2842-2851.
doi: 10.1002/mrm.26943
|
24 |
VAN GEMERT J, BRINK W, REMIS R, et al A simulation study on the effect of optimized high permittivity materials on fetal imaging at 3 T[J]. Magn Reson Med, 2019, 82 (5):1822-1831.
doi: 10.1002/mrm.27849
|
25 |
BRINK W M, WEBB A G High permittivity pads reduce specific absorption rate, improve B-1 homogeneity, and increase contrast-to-noise ratio for functional cardiac MRI at 3 T[J]. Magn Reson Med, 2014, 71 (4):1632-1640.
doi: 10.1002/mrm.24778
|
26 |
SCHMIDT R, WEBB A A new approach for electrical properties estimation using a global integral equation and improvements using high permittivity materials[J]. J Magn Reson, 2016, 262, 814.
|
27 |
VAN GEMERT J, BRINK W, WEBB A, et al High-permittivity pad design tool for 7 T neuroimaging and 3 T body imaging[J]. Magn Reson Med, 2019, 81 (5):3370-3378.
doi: 10.1002/mrm.27629
|
28 |
BRINK W M, REMIS R F, WEBB A G A theoretical approach based on electromagnetic scattering for analysing dielectric shimming in high-field MRI[J]. Magn Reson Med, 2016, 75 (5):2185-2194.
doi: 10.1002/mrm.25783
|
29 |
LUO M, HU C, ZHUANG Y, et al Numerical assessment of the reduction of specific absorption rate by adding high dielectric materials for fetus MRI at 3 T[J]. Biomed Eng-Biomed Tech, 2016, 61 (4):455-461.
|
30 |
SEO J H, HAN S D, KIM K N Improvements in magnetic field intensity and uniformity for small-animal MRI through a high-permittivity material attachment[J]. Electron Lett, 2016, 52 (11):898-899.
doi: 10.1049/el.2016.0638
|
31 |
RUYTENBERG T, O'REILLY T P, WEBB A G Design and characterization of receive-only surface coil arrays at 3 T with integrated solid high permittivity materials[J]. J Magn Reson, 2020, 311, 106681.
doi: 10.1016/j.jmr.2019.106681
|
32 |
CHEN W, LEE B Y, ZHU X H, et al Tunable ultrahigh dielectric constant (TuHDC) ceramic technique to largely improve RF coil efficiency and MR imaging performance[J]. IEEE Trans Med Imaging, 2020, 39 (10):3187-3197.
doi: 10.1109/TMI.2020.2988834
|
33 |
方俊鑫, 殷之文 电介质物理学[M]. 北京: 科学出版社, 1989.
|
34 |
WEBB A G Dielectric materials in magnetic resonance[J]. Concepts Magn Reson Part A, 2011, 38A (4):148-184.
doi: 10.1002/cmr.a.20219
|
35 |
HOULT D I The principle of reciprocity in signal strength calculations—A mathematical guide[J]. Concepts Magn Reson, 2000, 12 (4):173-187.
doi: 10.1002/1099-0534(2000)12:4<173::AID-CMR1>3.0.CO;2-Q
|
36 |
罗超. 基于超材料的3 T磁共振射频接收线圈性能研究[D]. 重庆: 重庆理工大学, 2016.
|
37 |
张巍巍. 基于1.5 T磁共振系统体线圈电磁参数分析及共振频率算法实现[D]. 成都: 西南交通大学, 2016.
|
38 |
XIN S X, HUANG Q, GAO Y, et al Fetus MRI at 7 T: B1 shimming strategy and SAR safety implications[J]. IEEE Trans Microw Theory Tech, 2013, 61 (5):2146-2152.
doi: 10.1109/TMTT.2013.2247053
|