波谱学杂志 ›› 2020, Vol. 37 ›› Issue (2): 152-161.doi: 10.11938/cjmr20192717

• 研究论文 • 上一篇    下一篇

基于级联卷积神经网络的前列腺磁共振图像分类

刘可文1, 刘紫龙1,2, 汪香玉3, 陈黎2, 李钊2, 吴光耀4, 刘朝阳2   

  1. 1. 武汉理工大学 信息工程学院, 湖北 武汉 430070;
    2. 波谱与原子分子物理国家重点实验室, 武汉磁共振中心(中国科学院 精密测量科学与技术创新研究院), 湖北 武汉 430071;
    3. 深圳市第二人民医院 医学影像科, 广东 深圳 518037;
    4. 深圳大学总医院 医学影像科, 广东 深圳 518055
  • 收稿日期:2019-02-28 出版日期:2020-06-05 发布日期:2019-05-30
  • 通讯作者: 刘可文,Tel:18986086863,E-mail:liukewen@whut.edu.cn. E-mail:liukewen@whut.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(2018YFC0115100).

Prostate Cancer Diagnosis Based on Cascaded Convolutional Neural Networks

LIU Ke-wen1, LIU Zi-long1,2, WANG Xiang-yu3, CHEN Li2, LI Zhao2, WU Guang-yao4, LIU Chao-yang2   

  1. 1. School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China;
    2. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan(Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences), Wuhan 430071, China;
    3. Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen 518037, China;
    4. Department of Radiology, Shenzhen University General Hospital, Shenzhen 518055, China
  • Received:2019-02-28 Online:2020-06-05 Published:2019-05-30

摘要: 针对深度学习训练成本高,以及基于磁共振图像的前列腺癌临床诊断需要大量医学常识且极为耗时的问题,本文提出了一种基于级联卷积神经网络(Convolutional Neural Network,CNN)和磁共振图像的前列腺癌(Prostate Cancer,PCa)自动分类诊断方法,该网络以Faster-RCNN作为前网络,对前列腺区域进行提取分割,用于排除前列腺附近组织器官的干扰;以基于ResNet改进的网络结构CNN40bottleneck作为后网络,用于对前列腺区域病变进行分类.后网络由瓶颈结构串联组成,其中使用批量标准化(Batch Normalization,BN)、全局平均池化(Global Average Pooling,GAP)进行优化.实验结果证明,本文方法对前列腺癌诊断结果较好,而且缩减了训练时间和参数量,有效降低了训练成本.

关键词: 磁共振成像(MRI), 级联卷积神经网络(Cascaded CNN), 前列腺癌(PCa), 分类

Abstract: Interpreting magnetic resonance imaging (MRI) data by radiologists is time consuming and demands special expertise. Diagnosis of prostate cancer (PCa) with deep learning can also be time consuming and data storage consuming. This work presents an automated method for PCa detection based on cascaded convolutional neural network (CNN), including pre-network and post-network. The pre-network is based on a Faster-RCNN and trained with prostate images in order to separate the prostate from nearby tissues; the ResNet-based post-network is for PCa diagnosis, which is connected by bottlenecks and improved by applying batch normalization (BN) and global average pooling (GAP). The experimental results demonstrated that the cascaded CNN proposed had a good classification results on the in-house datasets, with less training time and computation resources.

Key words: magnetic resonance imaging (MRI), cascaded convolutional neural network (Cascaded CNN), prostate cancer (PCa), classification

中图分类号: