波谱学杂志 ›› 2016, Vol. 33 ›› Issue (1): 1-26.doi: 10.11938/cjmr20160101

• 特邀综述 • 上一篇    下一篇

高压NMR在蛋白质结构和动力学研究中的应用

李华1, Yuji O. KAMATARI2, Ryo KITAHARA3, Kazuyuki AKASAKA4   

  1. 1. 中国科学院 上海生命科学研究院, 生物化学与细胞生物学细胞研究所 国家蛋白质科学中心(上海), 上海 200031, 中国;
    2. Life Science Research Center, Gifu University, Gifu 501-1194, Japan;
    3. College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan;
    4. Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
  • 收稿日期:2015-07-22 修回日期:2016-01-21 出版日期:2016-03-05 发布日期:2016-03-05
  • 通讯作者: 李华(1968-),女,吉林长春人,副研究员,从事关键免疫受体分子活化机制的结构生物学研究,电话:021-54921318,E-mail:lihua@sibcb.ac.cn. E-mail:lihua@sibcb.ac.cn
  • 作者简介:李华(1968-),女,吉林长春人,副研究员,从事关键免疫受体分子活化机制的结构生物学研究,电话:021-54921318,E-mail:lihua@sibcb.ac.cn.
  • 基金资助:

    国家自然科学基金资助项目(31470734).

High-Pressure NMR for Studying Protein Structure and Dynamics

LI Hua1, Yuji O. KAMATARI2, Ryo KITAHARA3, Kazuyuki AKASAKA4   

  1. 1. National Center for Protein Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
    2. Life Science Research Center, Gifu University, Gifu 501-1194, Japan;
    3. Collage of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan;
    4. Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
  • Received:2015-07-22 Revised:2016-01-21 Online:2016-03-05 Published:2016-03-05

摘要:

与温度一样,压力是基本的热力学变量.蛋白质在溶液中是多种构象的热力学平衡体.在不同的温度和压力等条件下,蛋白质包括折叠构象、变性构象以及各种中间体在内的不同构象的存在频率各不相同.当用压力作为扰动时,由于这些构象的偏摩尔体积不同,它们的存在频率便会因而发生变化,加压可将平衡向具有较小偏摩尔体积的方向移动.因此,利用高压核磁共振(NMR)技术,不仅可以研究高压对蛋白质结构和动力学的影响,还可以通过改变压力,在更为广泛的构象空间研究蛋白质结构和动力学.例如,利用平衡体系在加压时向体积小的构象方向移动这一特性,能够对在常压下因其存在频率低而难于检测、但在高压下因其体积小而存在频率增加了的构象进行深入研究,而这些构象往往与蛋白质的功能密切相关.该篇综述首先介绍了高压在蛋白质科学研究中的历史、有关概念和高压NMR技术;其次,结合实例,阐述高压NMR技术在蛋白质结构、折叠以及动力学研究中的应用;最后,对高压NMR技术在蛋白质研究中的应用前景进行展望.

关键词: 高压核磁共振(high-pressure NMR), 蛋白质结构, 蛋白质动力学, 偏摩尔体积, 体积波动, 低激发态

Abstract:

Proteins are thermodynamic entities that exist in general as an equilibrium mixture of the basic folded states, denatured states and various intermediate states with varying populations at certain temperature and pressure. When using pressure as a perturbation, the population will be scanned from the states with larger partial molar volumes to the states with smaller ones. Therefore, high-pressure NMR is applicable to study protein structure and dynamics at wider conformational space at the atomic level. Furthermore, under physiological conditions, the difficulty of detection of higher-energy substates by the conventional NMR is obvious, as the equilibrium populations of such higher-energy substates are extremely low. Hydrostatic pressure gives a general solution to this problem. The partial molar volumes of proteins at higher-energy states, being functionally relevant most of the time, are generally smaller than those at the basic folded ones, therefore, pressure can shift the equilibrium toward the former substantially, and allows their detection at elevated pressure. Recently, owing to the development of the high pressure NMR and multidimensional NMR technologies, and substantial development of protein structure and dynamics study itself, high pressure NMR spectroscopy is being paid more and more attention. In this review, the history, concepts, techniques, and applications of high-pressure NMR are presented with future prospects.

Key words: high-pressure NMR, protein structure, protein dynamics, partial molar volume, volume fluctuation, low-lying excited state

中图分类号: