[1] Price W S. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion. 1. Basic theory[J]. Concept Magnetic Res, 1997, 9(5): 299-336.
[2] Cui Y F, Wen J, Liu M L. Study of diffusion coefficient distribution of lipoproteins by pulse-field-gradiend (PFG-) NMR[J]. Chinese J Magn Reson(波谱学杂志), 2003, 20(1): 8-14.
[3] Hahn E L. Spin-echoes[J]. Phys Rev, 1950, 80: 580-594.
[4] Lin G X, Zhang J H, Cao H H, et al. A lattice model for the simulation of diffusion in heterogeneous polymer systems. Simulation of apparent diffusion constants as determined by pulse-field-gradient nuclear magnetic resonance[J]. J Phys Chem B, 2003, 107(25): 6 179-6 186.
[5] Mao S Z, Zhu L Y, Wang T Z, et al. Selfaggregation of dendritic poly(benzyl ether)-poly(acrylic acid), an amphiphilic block copolymer, studied by H-1 NMR[J]. Colloid Polym Sci, 2002, 280(1): 90-94.
[6] Lüdemann H D, Chen L P. Transport properties of supercritical fluids and their binary mixtures[J]. J Phys, 2002, 14(44): 11 453-11 462.
[7] Price W S, Ide H, Arata Y. Solution dynamics in aqueous monohydric alcohol systems[J]. J Phys Chem A, 2003, 107(24): 4 784-4 789.
[8] Giotto M V, Zhang J H, Inglefield P T, et al. Nanophase structure and diffusion in swollen perfluorosulfonate ionomer: An NMR approach
[J]. Macromolecules, 2003, 36(12): 4 397-4 403.
[9] Kennedy S D, Zhong J. Diffusion measurements free of motion artifacts using intermolecular dipole-dipole interactions[J]. Magn Reson Med, 2004, 52(1): 1-6.
[10] Ardelean L, Kossel E, Kimmich R. Attenuation of homo- and heteronuclear multiple spin echoes by diffusion[J]. J Chem Phys, 2001, 114: 8 520-8 529.
[11] Tanner J E, Stejskal E O. Restricted-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method[J]. J Chem Phys, 1968, 49(4): 1 768-1 777.
[12] Mitra P P, Sen P N. Effects of microgeometry and surface relaxation on NMR pulsed-field-gradient experiments-Simple pore geometries[J]. Phys Rev B, 1992, 45(1): 143-156.
[13] Balinov B, Jonsson B, Linse P, et al. The NMR self-diffusion method applied to restricted diffusion. Simulation of echo attenuation from molecules in spheres and between planes[J]. J Magn Reson A, 1993, 104(1): 17-25.
[14] Callaghan P T. A simple matrix formalism for spin echo analysis of restricted diffusion under generalized gradient waveforms[J]. J Magn Reson, 1997, 129(1): 74-84.
[15] Codd S L, Callaghan P T. Spin echo analysis of restricted diffusion under generalized gradient waveforms: Planar, cylindrical, and spherical pores with wall relaxivity[J]. J Magn Reson, 1999, 137(2): 358-372.
[16] Callaghan P T. Pulsed-gradient spin-echo NMR for planes, cylindrical and spherical pores under conditions of wall relaxation[J]. J Magn Reson A, 1995, 113(1): 53-59.
[17] Linse P, Soderman O. The validity of the short-gradient-pulse approximation in NMR studies of restricted diffusion. Simulations of molecules diffusing between planes, in cylinders and spheres[J]. J Magn Reson A, 1995, 116(1): 77-86.
[18] Neuman C H. Spin echo of spins diffusing in a bounded medium[J]. J Chem Phys, 1974, 60: 4 508-4 511.
[19] Murday J S, Cotts R M. Selfdiffusion coefficient of liquid lithium[J]. J Chem Phys, 1968, 48: 4 938-4 945.
[20] Vangelderen P, Despres D, Vanzijl P C M, et al. Evaluation of restricted diffusion in cylinders phosphocreation in rabbit leg muscle[J]. J Magn Reson B, 1994, 103(3): 255-260.
[21] Schachter M, Does M D, Anderson A W, et al. Measurements of restricted diffusion using an oscillating gradient spin-echo sequence[J]. J Magn Reson, 2000, 147(2): 232-237.
[22] Stepisnik J. Spin echo attenuation of restricted diffusion as a discord of spin phase structure[J]. J Magn Reson, 1998, 131(2): 339-346.
[23] Liu M L, Mao X A, Ye C H, et al. Enhanced effect of magnetic field gradients using multiple quantum NMR spectroscopy applied to self-diffusion coefficient measurement[J]. Mol Phys, 1998, 93(6): 913-920.
[24] Lin Q L, Cai S H, Chen Z, et al. Theoretical expression and computer simulation of diffusion behaviors in multiple-quantum coherence NMR[J]. Chin J Chem Phys, 2004, 17(2): 155-160.
[25] Cai C B, Chen Z, Cai S H, et al. Propagator formalism and computer simulation of restricted diffusion behaviors of inter-molecular multiplequantum coherences[J]. Physica B, 2005, 366(1-4): 127-137.
[26] Cai C B, Chen Z, Cai S H, et al. A simulation algorithm based on Bloch equations and product operator matrix: Application to dipolar and scalar couplings[J]. J Magn Reson, 2005, 172(2): 242-253.
[27] Cai C B, Chen Z, Cai S H, et al. Finite difference simulation of diffusion behaviors under inter- and intra-molecular multiple-quantum coherences in liquid NMR[J]. Chem Phys Lett, 2005, 407: 438-443.
[28] Cai C B, Cai S H, Chen Z. Theoretical expression and Monte Carlo simulation of diffusion behaviors in NMR with nonliner field gradients[J]. Chinese J Magn Reson(波谱学杂志), 2003, 20(3): 215-223.
[29] Chen Z, Zhong J. Unconventional diffusion behaviors of intermolecular multiple-quantum coherences in nuclear magnetic resonance[J]. J Chem Phys, 2001, 114(13): 5 642-5 653.
[30] Carslaw H S, Jaeger J C. Conduction of Heat in Solids[M]. Oxford: Oxford University Press, 1959.
[31] Van Kampen N G. Stochastic Processes in Physics and Chemstr[M]. Amsterdam: North Holland, 1981.
[32] Jeener J, Vlassenbroek A, Broekaert P. Unified derivation of the dipolar field and relaxation terms in the Bloch-Redfield equations of liquid NMR[J]. J Chem Phys, 1995, 103(4): 1 309-1 332.
[33] Stables L A, Kennan R P, Anderson A W, et al. Density matrix simulations of the effects of J coupling in spin echo and fast spin echo imaging[J]. J Magn Reson, 1999, 140(2): 305-314.
[34] Crank J. The Mathematics of Diffusion(2nd ed) [M]. London: Oxford University Press, 1975. |