[1] |
YANG S, ZUSMAN N, LIEBERMAN E, et al. Developmental dysplasia of the hip[J]. Pediatrics, 2019, 143(1).
|
[2] |
Wu M D, Feng J, Jia H H, et al. MRI-based morphological quantification of developmental dysplasia of the hip in children[J]. Chinese J Magn Reson, 2020, 37(4): 434-446.
|
|
吴明娣, 冯洁, 贾慧惠, 等. 儿童发育性髋关节脱位的磁共振形态学定量[J]. 波谱学杂志, 2020, 37(4): 434-446.
|
[3] |
GANZ R, KLAUE K, VINH T S, et al. A new periacetabular osteotomy for the treatment of hip dysplasias. Technique and preliminary results[J]. Clin Orthop Relat R, 1988, (232): 26-36.
pmid: 3383491
|
[4] |
HAKIM N S, KING A I. A three dimensional finite element dynamic response analysis of a vertebra with experimental verification[J]. J Biomech, 1979, 12(4): 277-285 & 287-292.
pmid: 468853
|
[5] |
TANNE K, SAKUDA M. Biomechanical and clinical changes of the craniofacial complex from orthopedic maxillary protraction[J]. Angle Orthod, 1991, 61(2): 145-152.
pmid: 2064072
|
[6] |
GAMBOA A, COSA A, BENET F, et al. A semiautomatic segmentation method, solid tissue classification and 3D reconstruction of mandible from computed tomography imaging for biomechanical analysis[C]// Barcelona, SPAIN:9th IEEE International Symposium on Biomedical Imaging (ISBI) - From Nano to Macro, 2012: 1483-1486.
|
[7] |
WANG Y C, YANG D, ZHAO L H, et al. Finite element analysis of mechanical characteristics of internal fixation for treatment of proximal femoral osteolytic lesions in children[J]. Orthop Surg, 2023, 10.1111/os.13591.
|
[8] |
ZHAO X, CHOSA E, TOTORIBE K, et al. Effect of periacetabular osteotomy for acetabular dysplasia clarified by three-dimensional finite element analysis[J]. J Orthop Sci, 2010, 15(5): 632-640.
doi: 10.1007/s00776-010-1511-z
pmid: 20953924
|
[9] |
LEE K J, PARK S J, LEE S J, et al. Biomechanical study on the efficacy of the periacetabular osteotomy using patient-specific finite element analysis[J]. Int J Precis Eng Man, 2015, 16(4): 823-829.
doi: 10.1007/s12541-015-0108-z
|
[10] |
LIU L, ECKER T M, SCHUMANN S, et al. Evaluation of constant thickness cartilage models vs. patient specific cartilage models for an optimized computer-assisted planning of periacetabular osteotomy[J]. PLoS One, 2016, 11(1): e0146452.
doi: 10.1371/journal.pone.0146452
|
[11] |
PARK S J, LEE S J, CHEN W M, et al. Computer-assisted optimization of the acetabular rotation in periacetabular osteotomy using patient’s anatomy-specific finite element analysis[J]. Appl Bionics Biomech, 2018: 9730525.
|
[12] |
KITAMURA K, FUJII M, IWAMOTO M, et al. Effect of coronal plane acetabular correction on joint contact pressure in periacetabular osteotomy: a finite-element analysis[J]. BMC Musculoskelet Disord, 2022, 23(1): 48.
doi: 10.1186/s12891-022-05005-5
|
[13] |
TIAN H, XU P, LU N, et al. The effect of pelvic modeling on outcome in preoperative planning for bernese acetabular osteotomy[J]. Journal of Medical Biomechanics, 2020, 35(6): 712-717.
|
|
田昊, 许平, 鲁宁, 等. Bernese髋臼截骨术术前规划中骨盆建模对结果的影响[J]. 医用生物力学, 2020, 35(6): 712-717.
|
[14] |
ZHANG L L, WANG X Y, CHEN X D. Study on finite element analysis method for the pre-operative planning of bernese periacetabular osteotomy[J]. Journal of Biomedical Engineering, 2016, 33(3): 455-460.
|
|
张琳琳, 王旭义, 陈晓东. Bernese髋臼周围截骨术术前规划的有限元分析方法研究[J]. 生物医学工程学杂志, 2016, 33(3): 455-460.
|
[15] |
STARLY B, FANG Z, SUN W, et al. Three-dimensional reconstruction for medical-CAD modeling[J]. Computer-aided Design and Applications, 2005, 2(1-4): 431-438.
doi: 10.1080/16864360.2005.10738392
|
[16] |
YANG Z G, GAN L, YE J X. Construction and stability of finite element models of distal tibial fractures[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(17): 2540-2545.
|
|
杨志刚, 甘霖, 叶俊星. 胫骨远端骨折有限元模型的建立及稳定性分析[J]. 中国组织工程研究, 2016, 20(17): 2540-2545.
|
[17] |
SOWMIANARAYANAN S, CHANDRASEKARAN A, KUMAR R K. Finite element analysis of a subtrochanteric fractured femur with dynamic hip screw, dynamic condylar screw, and proximal femur nail implants - a comparative study[J]. P I Mech Eng H, 2008, 222(1): 117-127.
doi: 10.1243/09544119JEIM156
|
[18] |
AKRAMI M, CRAIG K, DIBAJ M, et al. A three-dimensional finite element analysis of the human hip[J]. J Med Eng Technol, 2018, 42(7): 546-552.
doi: 10.1080/03091902.2019.1576795
pmid: 30875263
|
[19] |
BERGMANN G, DEURETZBACHER G, HELLER M, et al. Hip contact forces and gait patterns from routine activities[J]. J Biomech, 2001, 34(7): 859-871.
doi: 10.1016/s0021-9290(01)00040-9
pmid: 11410170
|
[20] |
BERGMANN G, GRAICHEN F, ROHLMANN A, et al. Hip joint forces during load carrying[J]. Clin Orthop Relat R, 1997, (335): 190-201.
pmid: 9020218
|
[21] |
BAY B K, HAMEL A J, OLSON S A, et al. Statically equivalent load and support conditions produce different hip joint contact pressures and periacetabular strains[J]. J Biomech, 1997, 30(2): 193-196.
pmid: 9001941
|
[22] |
PHILLIPS A T M, PANKAJ P, HOWIE C R, et al. Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions[J]. Med Eng Phys, 2007, 29(7): 739-748.
pmid: 17035063
|
[23] |
ZOU Z, CHAVEZ-ARREOLA A, MANDAL P, et al. Optimization of the position of the acetabulum in a ganz periacetabular osteotomy by finite element analysis[J]. J Orthop Res, 2013, 31(3): 472-479.
doi: 10.1002/jor.22245
pmid: 23097237
|
[24] |
GENDA E, IWASAKI N, LI G A, et al. Normal hip joint contact pressure distribution in single-leg standing—effect of gender and anatomic parameters[J]. J Biomech, 2001, 34(7): 895-905.
doi: 10.1016/S0021-9290(01)00041-0
|
[25] |
HARRIS M D, ANDERSON A E, HENAK C R, et al. Finite element prediction of cartilage contact stresses in normal human hips[J]. J Orthop Res, 2012, 30(7): 1133-1139.
doi: 10.1002/jor.22040
pmid: 22213112
|
[26] |
AKRAMI M, QIAN Z, ZOU Z, et al. Subject-specific finite element modelling of the human foot complex during walking: sensitivity analysis of material properties, boundary and loading conditions[J]. Biomech Mode Mechan, 2018, 17(2): 559-576.
|
[27] |
WU Z, CHEN S, LI Y, et al. Effect of centre-edge angle on clinical and quality of life outcomes after arthroscopic acetabular labral debridement[J]. Int Orthop, 2016, 40(7): 1427-1432.
doi: 10.1007/s00264-015-2923-3
pmid: 26220148
|
[28] |
KOLBER M J, CHEATHAM S W. Orthopedic management of the hip and pelvis[M]. St. Louis: Elsevier Health Sciences, 2015.
|
[29] |
WU G, SIEGLER S, ALLARD P, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion - part 1: ankle, hip, and spine[J]. J Biomech, 2002, 35(4): 543-548.
doi: 10.1016/S0021-9290(01)00222-6
|
[30] |
XIONG B, YANG P, LIN T, et al. Changes in hip joint contact stress during a gait cycle based on the individualized modeling method of “gait-musculoskeletal system-finite element”[J]. J Orthop Surg Res, 2022, 17(1): 267.
doi: 10.1186/s13018-022-03094-5
|
[31] |
MA Y, XING C J, XIAO L. Knee joint image segmentation and model construction based on cascaded network[J]. Chinese J Magn Reson, 2022, 39(2): 184-195.
|
|
马岩, 邢藏菊, 肖亮. 基于级联网络的膝关节图像分割与模型构建[J]. 波谱学杂志, 2022, 39(2): 184-195.
|