波谱学杂志 ›› 2023, Vol. 40 ›› Issue (4): 385-396.doi: 10.11938/cjmr20233062
收稿日期:
2023-03-28
出版日期:
2023-12-05
在线发表日期:
2023-05-16
通讯作者:
* Tel: 021-62233775, E-mail: 基金资助:
CHEN Mengying,WU Yupeng,PANG Qifan,ZHONG Haodong,LI Gaiying,LI Jianqi*()
Received:
2023-03-28
Published:
2023-12-05
Online:
2023-05-16
摘要:
尽管具有磁化转移(Magnetization Transfer,MT)的三维梯度回波序列可以同时进行神经黑色素和定量磁化率成像,但MT预饱和脉冲耗时长,且MT对磁化率定量的影响尚不明确.本文通过开发具有可变持续时间的MT脉冲,缩短了MT脉冲持续时间,并评估了MT对磁化率值定量的影响.研究结果显示,MT脉冲持续时间为5 ms的梯度回波序列在显示神经黑色素方面不低于持续时间为8 ms、10 ms和12 ms时序列的显示效果,并且得到的大脑深部灰质核团磁化率值与未加MT的序列具有良好一致性.这表明短持续时间的MT脉冲提供了一种同时成像神经黑色素和磁化率的实用方法.
中图分类号:
陈梦颖, 武玉朋, 逄奇凡, 钟昊东, 李改英, 李建奇. 全脑同时神经黑色素敏感与定量磁化率成像[J]. 波谱学杂志, 2023, 40(4): 385-396.
CHEN Mengying, WU Yupeng, PANG Qifan, ZHONG Haodong, LI Gaiying, LI Jianqi. Simultaneously Neuromelanin-sensitive Imaging and Quantitative Susceptibility Mapping in the Whole Brain[J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 385-396.
表1
施加和未施加MT射频脉冲采集得到的大脑深部灰质核团磁化率对比
核团 | 磁化率值( | 配对样本t检验(p值) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MT-5ms | MT-8ms | MT-10ms | MT-12ms | MT-Off | MT-5ms vs. MT-Off | MT-8ms vs. MT-Off | MT-10ms vs. MT-Off | MT-12ms vs. MT-Off | ||
尾状核 | 53±13 | 55±13 | 55±13 | 51±13 | 52±12 | 0.450 | 0.130 | 0.145 | 0.967 | |
壳核 | 38±10 | 39±13 | 38±11 | 36±10 | 36±11 | 0.485 | 0.221 | 0.469 | 0.971 | |
苍白球 | 127±13 | 125±11 | 126±13 | 123±13 | 127±10 | 0.738 | 0.227 | 0.450 | 0.288 | |
红核 | 67±21 | 66±18 | 64±17 | 65±22 | 63±21 | 0.210 | 0.196 | 0.845 | 0.618 | |
黑质 | 81±13 | 80±10 | 79±10 | 78±13 | 79±12 | 0.278 | 0.490 | 0.947 | 0.757 | |
齿状核 | 74±11 | 73±9 | 74±12 | 71±10 | 73±10 | 0.706 | 0.879 | 0.378 | 0.489 |
[1] |
OHTSUKA C, SASAKI M, KONNO K, et al. Changes in substantia nigra and locus coeruleus in patients with early-stage Parkinson’s disease using neuromelanin-sensitive MR imaging[J]. Neurosci Lett, 2013, 541: 93-98.
doi: 10.1016/j.neulet.2013.02.012 |
[2] |
ZUCCA F A, SEGURA-AGUILAR J, FERRARI E, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease[J]. Prog Neurobiol, 2017, 155: 96-119.
doi: 10.1016/j.pneurobio.2015.09.012 |
[3] |
ZECCA L, BELLEI C, COSTI P, et al. New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals[J]. Proc Natl Acad Sci USA, 2008, 105(45): 17567-17572.
doi: 10.1073/pnas.0808768105 pmid: 18988735 |
[4] |
MOSHAROV E V, LARSEN K E, KANTER E, et al. Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons[J]. Neuron, 2009, 62(2): 218-229.
doi: 10.1016/j.neuron.2009.01.033 pmid: 19409267 |
[5] |
TRUJILLO P, SUMMERS P E, FERRARI E, et al. Contrast mechanisms associated with neuromelanin-MRI[J]. Magn Reson Med, 2017, 78(5): 1790-1800.
doi: 10.1002/mrm.26584 pmid: 28019018 |
[6] |
SASAKI M, SHIBATA E, TOHYAMA K, et al. Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease[J]. Neuroreport, 2006, 17(11): 1215-1218.
doi: 10.1097/01.wnr.0000227984.84927.a7 |
[7] |
RENEMAN L, VAN DER PLUIJM M, SCHRANTEE A, et al. Imaging of the dopamine system with focus on pharmacological MRI and neuromelanin imaging[J]. Eur J Radiol, 2021, 140: 109752.
doi: 10.1016/j.ejrad.2021.109752 |
[8] |
LANGLEY J, HUDDLESTON D E, LIU C J, et al. Reproducibility of locus coeruleus and substantia nigra imaging with neuromelanin sensitive MRI[J]. Magn Reson Mat Phys Biol Med, 2016, 30(2): 121-125.
doi: 10.1007/s10334-016-0590-z |
[9] | YANG J Q, YANG X F, ZHONG C Q, et al. The application value of neuromelanin sensitive magnetic resonance imaging in the diagnosis of Parkinson’s disease[J] J Clin Radiol, 2021, 40(5): 5. |
杨俊强, 杨晓帆, 仲崇琦, 等. 神经黑色素敏感磁共振成像对诊断帕金森病的应用价值[J]. 临床放射学杂志, 2021, 40(5): 5. | |
[10] |
MATSUURA K, MAEDA M, TABEI K I, et al. A longitudinal study of neuromelanin-sensitive magnetic resonance imaging in Parkinson’s disease[J]. Neurosci Lett, 2016, 633: 112-117.
doi: 10.1016/j.neulet.2016.09.011 |
[11] |
XIANG Y, GONG T, WU J, et al. Subtypes evaluation of motor dysfunction in Parkinson’s disease using neuromelanin-sensitive magnetic resonance imaging[J]. Neurosci Lett, 2017, 638: 145-150.
doi: 10.1016/j.neulet.2016.12.036 |
[12] |
WANG J, HUANG Z, LI Y, et al. Neuromelanin-sensitive MRI of the substantia nigra: an imaging biomarker to differentiate essential tremor from tremor-dominant Parkinson’s disease[J]. Parkinsonism Relat Disord, 2019, 58: 3-8.
doi: 10.1016/j.parkreldis.2018.07.007 |
[13] | LEITAO R, GUERREIRO C, NUNES R G, et al. Neuromelanin magnetic resonance imaging of the substantia nigra in Huntington’s disease[J]. J Huntingtons Dis, 2020, 9(2): 143-148. |
[14] |
SHIBATA E, SASAKI M, TOHYAMA K, et al. Use of neuromelanin-sensitive MRI to distinguish schizophrenic and depressive patients and healthy individuals based on signal alterations in the substantia nigra and locus ceruleus[J]. Biol Psychiatry, 2008, 64(5): 401-406.
doi: 10.1016/j.biopsych.2008.03.021 |
[15] |
CASSIDY C M, CARPENTER K M, KONOVA A B, et al. Evidence for dopamine abnormalities in the substantia nigra in cocaine addiction revealed by neuromelanin-sensitive MRI[J]. Am J Psychiatry, 2020, 177(11): 1038-1047.
doi: 10.1176/appi.ajp.2020.20010090 |
[16] |
DE ROCHEFORT L, LIU T, KRESSLER B, et al. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging[J]. Magn Reson Med, 2010, 63(1): 194-206.
doi: 10.1002/mrm.22187 pmid: 19953507 |
[17] |
LANGKAMMER C, SCHWESER F, KREBS N, et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study[J]. NeuroImage, 2012, 62(3): 1593-1599.
doi: 10.1016/j.neuroimage.2012.05.049 pmid: 22634862 |
[18] |
LI G, WU R, TONG R, et al. Quantitative measurement of metal accumulation in brain of patients with Wilson’s disease[J]. Mov Disord, 2020, 35(10): 1787-1795.
doi: 10.1002/mds.v35.10 |
[19] |
BULK M, ABDELMOULA W M, GEUT H, et al. Quantitative MRI and laser ablation-inductively coupled plasma-mass spectrometry imaging of iron in the frontal cortex of healthy controls and Alzheimer’s disease patients[J]. Neuroimage, 2020, 215: 116808.
doi: 10.1016/j.neuroimage.2020.116808 |
[20] |
HUANG W, SWEENEY E M, KAUNZNER U W, et al. Quantitative susceptibility mapping versus phase imaging to identify multiple sclerosis iron rim lesions with demyelination[J]. J Neuroimaging, 2022, 32(4): 667-675.
doi: 10.1111/jon.12987 pmid: 35262241 |
[21] |
WANG S, LOU M, LIU T, et al. Hematoma volume measurement in gradient echo MRI using quantitative susceptibility mapping[J]. Stroke, 2013, 44(8): 2315-2317.
doi: 10.1161/STROKEAHA.113.001638 pmid: 23704111 |
[22] |
CHEN W, ZHU W, KOVANLIKAYA I, et al. Intracranial calcifications and hemorrhages: characterization with quantitative susceptibility mapping[J]. Radiology, 2014, 270(2): 496-505.
doi: 10.1148/radiol.13122640 pmid: 24126366 |
[23] |
AZUMA M, HIRAI T, YAMADA K, et al. Lateral asymmetry and spatial difference of iron deposition in the substantia nigra of patients with Parkinson disease measured with quantitative susceptibility mapping[J]. Am J Neuroradiol, 2016, 37(5): 782-788.
doi: 10.3174/ajnr.A4645 pmid: 26822728 |
[24] |
AN H, ZENG X, NIU T, et al. Quantifying iron deposition within the substantia nigra of Parkinson’s disease by quantitative susceptibility mapping[J]. J Neurol Sci, 2018, 386: 46-52.
doi: 10.1016/j.jns.2018.01.008 |
[25] |
BERGSLAND N, ZIVADINOV R, SCHWESER F, et al. Ventral posterior substantia nigra iron increases over 3 years in Parkinson’s disease[J]. Mov Disord, 2019, 34(7): 1006-1013.
doi: 10.1002/mds.v34.7 |
[26] |
SJOSTROM H, GRANBERG T, WESTMAN E, et al. Quantitative susceptibility mapping differentiates between parkinsonian disorders[J]. Parkinsonism Relat Disord, 2017, 44: 51-57.
doi: 10.1016/j.parkreldis.2017.08.029 |
[27] | WU M Z, LUAN J X, ZHANG C C, et al. Meta analysis of quantitative susceptibility mapping of substantia nigra in the diagnosis of Parkinson’s disease[J] Chin J Magn Reson Imaging, 2023, 14(2): 6-11. |
吴明振, 栾继昕, 张传臣, 等. 黑质定量磁化率成像对帕金森病诊断价值的Meta分析[J]. 磁共振成像, 2023, 14(2): 6-11. | |
[28] | TAKAHASHI H, WATANABE Y, TANAKA H, et al. Quantifying changes in nigrosomes using quantitative susceptibility mapping and neuromelanin imaging for the diagnosis of early-stage Parkinson’s disease[J]. Br J Radiol, 2018, 91(1086): 20180037. |
[29] |
TAKAHASHI H, WATANABE Y, TANAKA H, et al. Comprehensive MRI quantification of the substantia nigra pars compacta in Parkinson’s disease[J]. Eur J Radiol, 2018, 109: 48-56.
doi: 10.1016/j.ejrad.2018.06.024 |
[30] |
WANG X, ZHANG Y, ZHU C, et al. The diagnostic value of SNpc using NM-MRI in Parkinson’s disease: meta-analysis[J]. Neurol Sci, 2019, 40(12): 2479-2489.
doi: 10.1007/s10072-019-04014-y |
[31] |
HE N, GHASSABAN K, HUANG P, et al. Imaging iron and neuromelanin simultaneously using a single 3D gradient echo magnetization transfer sequence: Combining neuromelanin, iron and the nigrosome-1 sign as complementary imaging biomarkers in early stage Parkinson’s disease[J]. NeuroImage, 2021, 230: 117810.
doi: 10.1016/j.neuroimage.2021.117810 |
[32] |
JIN L, WANG J, WANG C, et al. Combined visualization of nigrosome-1 and neuromelanin in the substantia nigra using 3T MRI for the differential diagnosis of essential tremor and de novo Parkinson’s disease[J]. Front Neurol, 2019, 10: 100.
doi: 10.3389/fneur.2019.00100 |
[33] |
ARMSTRONG M J, OKUN M S. Diagnosis and treatment of Parkinson disease: a review[J]. J Am Med Assoc, 2020, 323(6): 548-560.
doi: 10.1001/jama.2019.22360 |
[34] |
WANG J Y, ZHUANG Q Q, ZHU L B, et al. Meta-analysis of brain iron levels of Parkinson’s disease patients determined by postmortem and MRI measurements[J]. Sci Rep, 2016, 6: 36669.
doi: 10.1038/srep36669 |
[35] |
KARSA A, PUNWANI S, SHMUELI K. The effect of low resolution and coverage on the accuracy of susceptibility mapping[J]. Magn Reson Med, 2019, 81(3): 1833-1848.
doi: 10.1002/mrm.27542 pmid: 30338864 |
[36] |
HENKELMAN R M, STANISZ G J, GRAHAM S J. Magnetization transfer in MRI: a review[J]. NMR Biomed, 2001, 14(2): 57-64.
pmid: 11320533 |
[37] |
WENGLER K, CASSIDY C, VAN DER PLUIJM M, et al. Cross-scanner harmonization of neuromelanin-sensitive MRI for multisite studies[J]. J Magn Reson Imaging, 2021, 54(4): 1189-1199.
doi: 10.1002/jmri.27679 pmid: 33960063 |
[38] | BERNSTEIN M A, KING K F, ZHOU X J. Handbook of MRI pulse sequences[M]. Burlington: Academic Press, 2004: 96-124. |
[39] |
PIKE G B, GLOVER G H, HU B S, et al. Pulsed magnetization transfer spin-echo MR imaging[J]. J Magn Reson Imaging, 1993, 3(3): 531-539.
pmid: 8324313 |
[40] |
BIONDETTI E, KARSA A, THOMAS D L, et al. Investigating the accuracy and precision of TE-dependent versus multi-echo QSM using laplacian-based methods at 3 T[J]. Magn Reson Med, 2020, 84(6): 3040-3053.
doi: 10.1002/mrm.v84.6 |
[41] |
SMITH S M. Fast robust automated brain extraction[J]. Hum Brain Mapp, 2002, 17(3): 143-155.
doi: 10.1002/hbm.10062 pmid: 12391568 |
[42] |
LIU T, WISNIEFF C, LOU M, et al. Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping[J]. Magn Reson Med, 2013, 69(2): 467-476.
doi: 10.1002/mrm.24272 pmid: 22488774 |
[43] | ZHAO X X, BO B S, LIU T, et al. Research on multi-echo phase fitting algorithm for quantitative susceptibility mapping[J]. Chinese J Magn Reson, 2016, 33(4): 609-617. |
赵欣欣, 薄斌仕, 刘田, 等. 定量磁化率成像多回波相位拟合算法研究[J]. 波谱学杂志, 2016, 33(4): 609-617. | |
[44] |
ABDUL-RAHMAN H S, GDEISAT M A, BURTON D R, et al. Fast and robust three-dimensional best path phase unwrapping algorithm[J]. Appl Opt, 2007, 46(26): 6623-6635.
doi: 10.1364/AO.46.006623 |
[45] |
ZHOU D, LIU T, SPINCEMAILLE P, et al. Background field removal by solving the Laplacian boundary value problem[J]. NMR Biomed, 2014, 27(3): 312-319.
doi: 10.1002/nbm.3064 pmid: 24395595 |
[46] |
LIU Z, SPINCEMAILLE P, YAO Y, et al. MEDI+0: morphology enabled dipole inversion with automatic uniform cerebrospinal fluid zero reference for quantitative susceptibility mapping[J]. Magn Reson Med, 2018, 79(5): 2795-2803.
doi: 10.1002/mrm.26946 pmid: 29023982 |
[47] |
LIU J, LIU T, DE ROCHEFORT L, et al. Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map[J]. NeuroImage, 2012, 59(3): 2560-2568.
doi: 10.1016/j.neuroimage.2011.08.082 pmid: 21925276 |
[48] |
LIU T, XU W, SPINCEMAILLE P, et al. Accuracy of the morphology enabled dipole inversion (MEDI) algorithm for quantitative susceptibility mapping in MRI[J]. IEEE Trans Med Imaging, 2012, 31(3): 816-824.
doi: 10.1109/TMI.2011.2182523 |
[49] |
SCHWARZ S T, RITTMAN T, GONTU V, et al. T1-weighted MRI shows stage-dependent substantia nigra signal loss in Parkinson’s disease[J]. Mov Disord, 2011, 26(9): 1633-1638.
doi: 10.1002/mds.23722 |
[50] |
OGISU K, KUDO K, SASAKI M, et al. 3D neuromelanin-sensitive magnetic resonance imaging with semi-automated volume measurement of the substantia nigra pars compacta for diagnosis of Parkinson’s disease[J]. Neuroradiology, 2013, 55(6): 719-724.
doi: 10.1007/s00234-013-1171-8 |
[51] |
CHEN X, HUDDLESTON D E, LANGLEY J, et al. Simultaneous imaging of locus coeruleus and substantia nigra with a quantitative neuromelanin MRI approach[J]. Magn Reson Imaging, 2014, 32(10): 1301-1306.
doi: 10.1016/j.mri.2014.07.003 pmid: 25086330 |
[52] |
DIMOV A V, GUPTA A, KOPELL B H, et al. High-resolution QSM for functional and structural depiction of subthalamic nuclei in DBS presurgical mapping[J]. J Neurosurg, 2018, 131(2): 360-367.
doi: 10.3171/2018.3.JNS172145 pmid: 30095333 |
[53] |
VITEK J L, LYONS K E, BAKAY R, et al. Standard guidelines for publication of deep brain stimulation studies in Parkinson’s disease (Guide4DBS-PD)[J]. Mov Disord, 2010, 25(11): 1530-1537.
doi: 10.1002/mds.v25:11 |
[54] |
ASHKAN K, BLOMSTEDT P, ZRINZO L, et al. Variability of the subthalamic nucleus: the case for direct MRI guided targeting[J]. Br J Neurosurg, 2007, 21(2): 197-200.
pmid: 17453788 |
[55] |
LIU T, ESKREIS-WINKLER S, SCHWEITZER A D, et al. Improved subthalamic nucleus depiction with quantitative susceptibility mapping[J]. Radiology, 2013, 269(1): 216-223.
doi: 10.1148/radiol.13121991 pmid: 23674786 |
[56] |
ZHAO W, WANG Y, ZHOU F, et al. Automated segmentation of midbrain structures in high-resolution susceptibility maps based on convolutional neural network and transfer learning[J]. Front Neurosci, 2022, 16: 801618.
doi: 10.3389/fnins.2022.801618 |
[57] |
HUA J, HURST G C. Analysis of on- and off-resonance magnetization transfer techniques[J]. J Magn Reson Imaging, 1995, 5(1): 113-120.
pmid: 7696801 |
[58] | BAOGUI Z, KUN W, TIANZI J. RF power design optimization in MRI system[J]. Magn Reson Lett, 2021, 1(1): 89-98. |
[1] | 赵欣欣, 薄斌仕, 刘田, 王乙, 李建奇. 定量磁化率成像多回波相位拟合算法研究[J]. 波谱学杂志, 2016, 33(4): 609-617. |
[2] | 翁鹏飞1,董芳1,王前锋1,裴孟超1,刘田2,王乙1,3,4,李建奇1*. 三维多回波流动补偿定量磁化率成像(QSM)方法研究[J]. 波谱学杂志, 2015, 32(3): 450-461. |
[3] | 王阿莉1,林建忠2,刘伟骏3,蔡聪波3*,陈 忠1. 定量磁化率成像重建方法及其应用[J]. 波谱学杂志, 2014, 31(1): 133-154. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||