[1] |
LIU Y Y, YANG Y X, ZHU Q Y, et al. Accelerating T1ρ dispersion imaging with multiple relaxation signal compensation[J]. Chinese J Magn Reson, 2022, 39(3): 243-257.
|
|
刘元元, 杨育昕, 朱庆永, 等. 基于多弛豫信号补偿的快速磁共振T1ρ散布成像[J]. 波谱学杂志, 2022, 39(3): 243-257.
|
[2] |
DONOHO D L. Compressed sensing[J]. IEEE Trans Inform Theory, 2006, 52(4): 1289-1306.
doi: 10.1109/TIT.2006.871582
|
[3] |
刘晓晖. 基于压缩感知的磁共振图像稀疏重建算法研究[D]. 广州: 南方医科大学, 2018.
|
[4] |
MICHAEL L, DONOHO D L, PAULY J M. Sparse MRI: the application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6): 1182-1195.
doi: 10.1002/mrm.21391
pmid: 17969013
|
[5] |
GOPI V P, PALANISAMY P, WAHID K A, et al. Multiple regularization based MRI reconstruction[J]. Signal Process, 2014, 103: 103-113.
doi: 10.1016/j.sigpro.2013.11.001
|
[6] |
YU Y, HONG M, LIU F, et al. Compressed sensing MRI using singular value decomposition based sparsity basis[C]// Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston, USA, IEEE, 2011: 5734-5737.
|
[7] |
HUANG J, ZHANG S, METAXAS D. Efficient MR image reconstruction for compressed MR imaging[J]. Med Image Anal, 2011, 15: 670-679.
doi: 10.1016/j.media.2011.06.001
pmid: 21742542
|
[8] |
MA S, YIN W, ZHANG Y. An efficient algorithm for compressed MR imaging using total variation and wavelets[C]// IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA: IEEE, 2008: 1-8.
|
[9] |
CHEN Z, FU Y, XIANG Y, et al. A novel low-rank model for MRI using theredundant wavelet tight frame[J]. Neurocomputing, 2018: S0925231218301310.
|
[10] |
RAVISHANKAR S, BRESLER Y. MR image reconstruction from highly undersampled k-space data by dictionary learning[J]. IEEE T Med Imaging, 2010, 30(5): 1028-1041.
doi: 10.1109/TMI.2010.2090538
|
[11] |
IKRAM S, ZUBAIR S, SHAH J A, et al. Enhancing MR image reconstruction using block dictionary learning[J]. IEEE Access, 2019, 7: 158434-158444.
doi: 10.1109/ACCESS.2019.2949917
|
[12] |
QU X, CAO X, GUO D, et al. Combined sparsifying transforms for compressed sensing MRI[J]. Electron Lett, 2010, 46(2): 121-123.
doi: 10.1049/el.2010.1845
|
[13] |
KNOLL F, BREDIES K, POCK T, et al. Second order total generalized variation (tgv) for MRI[J]. Magn Reson Med, 2011, 65(2): 480-491.
doi: 10.1002/mrm.22595
pmid: 21264937
|
[14] |
YANG X M, MEI Y B, HU X Y, et al. Compressed sensing MRI by integrating deep denoiser and weighted schatten P-norm minimization[J]. IEEE Signal Proc Lett, 2022, 29: 21-25.
doi: 10.1109/LSP.2021.3122338
|
[15] |
JIANG M F, YUAN Z H, YANG X, et al. Accelerating CS-MRI reconstruction with fine-tuning wasserstein generative adversarial network[J]. IEEE Access, 2019, 7: 152347-152357.
doi: 10.1109/Access.6287639
|
[16] |
LI G, LV J, WANG C. A modified generative adversarial network using spatial and channel-wise attention for CS-MRI reconstruction[J]. IEEE Access, 2021, 9: 83185-83198.
doi: 10.1109/ACCESS.2021.3086839
|
[17] |
OLAF R, PHILIPP F, THOMAS B. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 Medical Imaging Computing and Computer-Assisted Intervention. Munich, Germany: Springer, Cham, 2015: 234-241.
|
[18] |
LIAN Q S, FU L P, CHEN S Z, et al. A compressed sensing algorithm based on multi-scale residual reconstruction network[J]. Acta Automatica Sinica, 2019(11): 2082-2091.
|
|
练秋生, 富利鹏, 陈书贞, 等. 基于多尺度残差网络的压缩感知重构算法[J]. 自动化学报, 2019, 45(11): 2082-2091
|
[19] |
DAI Z X, LI J X, ZHANG X D, et al. Super-resolution reconstruction of MRI based on DNGAN[J]. Computer Science, 2022, 49(7): 113-119.
|
|
戴朝霞, 李锦欣, 张向东, 等. 基于DNGAN的磁共振图像超分辨率重建算法[J]. 计算机科学, 2022, 49(07): 113-119.
|
[20] |
CHAN S H, WANG X, ELGENDY O A. Plug-and-Play ADMM for image restoration: fixed-point convergence and applications[J]. IEEE T Compu Imag, 2017, 3(1): 84-98.
|
[21] |
ZHANG J, GHANEM B. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA: IEEE, 2018: 1828-1837.
|
[22] |
LIU Y, LIU Q, ZHANG M, et al. IFR-Net: Iterative feature refinement network for compressed sensing MRI[J]. IEEE T Comput Imag, 6, 434-446.
|
[23] |
SHAH K D, PATEL D K, PATEL H A, et al. EMED-UNet: An efficient multi-encoder-decoder based UNet for chest X-ray segmentation[C]// 2022 IEEE Region 10 Symposium (TENSYMP), Mumbai, India, IEEE, 2022: 1-6.
|
[24] |
HONG L T T, THANH N C, LONG T Q, CRF-EfficientUNet: An improved UNet framework for polyp segmentation in colonoscopy images with combined asymmetric loss function and CRF-RNN layer[J]. IEEE Access, 2021, 9: 156987-157001.
doi: 10.1109/ACCESS.2021.3129480
|
[25] |
RAMZI Z, CIUCIU P, STARCK J L. Benchmarking MRI reconstruction neural networks on large public datasets[J]. Appl Sci, 2020, 10, 1816.
doi: 10.3390/app10051816
|
[26] |
JETHI A K, MURUGESAN B, RAM K, et al. Dual-encoder-U-net for fast MRI reconstruction[C]// 2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops), Iowa City, USA: IEEE, 2020: 1-4.
|
[27] |
ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE T Med Imaging, 39(6): 1856-1867.
doi: 10.1109/TMI.42
|
[28] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA: IEEE, 2016: 770-778.
|
[29] |
ZBONTAR J, KNOLL F, SRIRAM A, et al. fastMRI: An open dataset and benchmarks for accelerated MRI[J]. arXiv preprint arXiv:1811.08839, 2018.
|
[30] |
LI Y Y, LI L, LI X S, et al. 3D Dynamic MRI with Homotopic l0 Minimization Reconstruction[J]. Chinese J Magn Reson, 2022, 39(01): 20-32.
|
|
李嫣嫣, 李律, 李雪松, 等. 基于同伦l0范数最小化重建的三维动态磁共振成像[J]. 波谱学杂志, 2022, 39(01): 20-32.
|
[31] |
CHENG J, WANG H, YING L, et al. Model learning: Primal dual networks for fastMR imaging[C]// Medical Image Computing and Computer Assisted Intervention - MICCAI 2019, Springer, Cham, 2019: 21-29.
|
[32] |
SCHLEMPER J, CABALLERO J, HAJNAL J V, et al. A deep cascade of convolutional neural networks for MR image reconstruction[C]// International conference on information processing in medical imaging, Springer, Cham, 2017: 647-658.
|
[33] |
EO T, JUN Y, KIM T, et al. KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images[J]. Magn Reson Med, 2018, 80(5): 2188-2201.
doi: 10.1002/mrm.27201
pmid: 29624729
|
[34] |
RAMANARAYANAN S, MURUGESAN B, RAM K, et al. DC-WCNN: A deep cascade of wavelet based convolutional neural networks for MR image reconstruction[C]// 2020 IEEE 17th International Symposium on Biomedical Imaging, Iowa City, USA: IEEE, 2020: 1069-1073.
|