波谱学杂志 ›› 2021, Vol. 38 ›› Issue (3): 301-312.doi: 10.11938/cjmr20212893
张书怀1,2,马慧1,2,郭朝晖1,2,马敏珺1,2,乔岩1,2,*(),王英雄1,2,*()
收稿日期:
2021-02-28
出版日期:
2021-09-05
发布日期:
2021-03-31
通讯作者:
乔岩,王英雄
E-mail:qiaoy@sxicc.ac.cn;wangyx@sxicc.ac.cn
基金资助:
Shu-huai ZHANG1,2,Hui MA1,2,Zhao-hui GUO1,2,Min-jun MA1,2,Yan QIAO1,2,*(),Ying-xiong WANG1,2,*()
Received:
2021-02-28
Online:
2021-09-05
Published:
2021-03-31
Contact:
Yan QIAO,Ying-xiong WANG
E-mail:qiaoy@sxicc.ac.cn;wangyx@sxicc.ac.cn
摘要:
由于制备液体燃料的费托合成工艺在合成过程中排放的费托反应生成水通常含有水溶性含氧化合物,例如醇、醛、酮和羧酸.费托反应生成水酸性强、成分复杂、种类繁多,因此需处理后才能排放.本文以核磁共振(NMR)为主要技术手段,以正丁醇和丙酸作为费托反应生成水中水溶性有机成分的模型化合物,研究了腐殖酸(HA)对费托反应生成水的吸附作用.1H NMR滴定实验和1H弛豫时间测定结果显示:随HA浓度增大,正丁醇质子信号变宽,但化学位移未变;丙酸质子信号变宽,且化学位移向高场移动;正丁醇和丙酸的1H自旋-晶格和自旋-自旋弛豫时间均降低,分子相关时间增大.HA与正丁醇、丙酸的结合百分比表明HA对正丁醇的吸附作用大于丙酸.增加HA浓度有利于HA与正丁醇相互作用,但溶液pH值对HA(20 mg/mL)与正丁醇相互作用影响较小;另一方面,增加HA浓度、降低溶液pH值均有利于HA与丙酸相互作用,且HA浓度对相互作用的影响高于溶液pH值.本研究表明HA用于吸附处理费托反应生成水有效,且过程简单、价格低廉,在工业应用中具有潜力.
中图分类号:
张书怀,马慧,郭朝晖,马敏珺,乔岩,王英雄. 正丁醇/丙酸与腐殖酸相互作用的NMR研究[J]. 波谱学杂志, 2021, 38(3): 301-312.
Shu-huai ZHANG,Hui MA,Zhao-hui GUO,Min-jun MA,Yan QIAO,Ying-xiong WANG. Interactions Between n-Butanol/Propionic Acid and Humic Acid Studied by NMR Spectroscopy[J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 301-312.
表1
正丁醇和丙酸质子的T1和T2值随HA浓度的变化
CHA/(mg/mL) | T1/s | T2/s | |||||||||||
H-1 | H-2 | H-3 | H-4 | H-5 | H-6 | H-1 | H-2 | H-3 | H-4 | H-5 | H-6 | ||
0 | 4.30 | 4.26 | 3.92 | 4.09 | 5.90 | 5.71 | 3.786 | 3.692 | 3.620 | 3.007 | 5.322 | 5.003 | |
1 | 1.48 | 1.49 | 1.39 | 1.25 | 1.95 | 1.53 | 0.279 | 0.276 | 0.283 | 0.231 | 0.442 | 0.378 | |
3 | 0.59 | 0.58 | 0.56 | 0.48 | 1.09 | 0.81 | 0.092 | 0.090 | 0.094 | 0.080 | 0.212 | 0.188 | |
5 | 0.52 | 0.51 | 0.39 | 0.42 | 1.04 | 0.77 | 0.079 | 0.078 | 0.081 | 0.067 | 0.205 | 0.171 | |
10 | 0.30 | 0.26 | 0.26 | 0.23 | 0.98 | 0.72 | 0.042 | 0.042 | 0.044 | 0.036 | 0.175 | 0.150 | |
15 | 0.15 | 0.08 | 0.08 | 0.09 | 0.85 | 0.63 | 0.018 | 0.021 | 0.022 | 0.016 | 0.127 | 0.119 | |
20 | 0.09 | 0.08 | 0.08 | 0.08 | 0.64 | 0.46 | 0.009 | 0.013 | 0.012 | 0.008 | 0.087 | 0.075 | |
25 | 0.09 | 0.07 | 0.07 | 0.07 | 0.68 | 0.46 | 0.009 | 0.013 | 0.012 | 0.007 | 0.084 | 0.084 | |
30 | 0.09 | 0.07 | 0.07 | 0.07 | 0.68 | 0.46 | 0.009 | 0.012 | 0.012 | 0.007 | 0.083 | 0.081 |
1 |
WANG X , JIANG X W . Application of rectification-pervaporation combined process in the recovery of alcohol products from Fischer-Tropsch waste water[J]. Chem Eng Res Des, 2019, 29 (3): 3- 7, 25, 21.
doi: 10.3969/j.issn.1007-6247.2019.03.002 |
汪旭, 蒋晓伟. 精馏-渗透汽化联合工艺在费托合成水回收醇类产品中的应用[J]. 化工设计, 2019, 29 (3): 3- 7, 25, 21.
doi: 10.3969/j.issn.1007-6247.2019.03.002 |
|
2 |
NEL R J J , DE KLERK A . Fischer−Tropsch aqueous phase refining by catalytic alcohol dehydration[J]. Ind Eng Chem Res, 2007, 46 (11): 3558- 3565.
doi: 10.1021/ie061555r |
3 | BHATNAGAR A , SILLANPää M . Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-A review[J]. Chem Eng J, 2010, 157 (2, 3): 277- 296. |
4 |
CHAI Z P . Research and application analysis of coal chemical wastewater treatment technology[J]. Chemical Enterprise Management, 2014, (29): 272- 274.
doi: 10.3969/j.issn.1008-4800.2014.29.240 |
柴振鹏. 煤化工废水处理技术研究及应用分析[J]. 化工管理, 2014, (29): 272- 274.
doi: 10.3969/j.issn.1008-4800.2014.29.240 |
|
5 | TIAN Z M , JIN C , HE X W . Engineering application of Fischer-Tropsch synthesis wastewater treatment by anaerobic technology[J]. Technology of Water Treatment, 2017, 43 (9): 101- 103. |
6 |
AHAD N , DE KLERK A . Fischer-Tropsch acid water processing by Kolbe electrolysis[J]. Fuel, 2018, 211, 415- 419.
doi: 10.1016/j.fuel.2017.09.075 |
7 |
LIAO X Y , WANG F , WANG Y Z , et al. Constructing Fe-based bi-MOFs for photo-catalytic ozonation of organic pollutants in Fischer-Tropsch waste water[J]. Appl Surf Sci, 2020, 509, 145378.
doi: 10.1016/j.apsusc.2020.145378 |
8 |
MA W W , HAN Y X , XU C Y , et al. Enhanced degradation of phenolic compounds in coal gasification wastewater by a novel integration of micro-electrolysis with biological reactor (MEBR) under the micro-oxygen condition[J]. Bioresour Technol, 2018, 251, 303- 310.
doi: 10.1016/j.biortech.2017.12.042 |
9 |
CHEN L G , ZHU Y L , ZHENG H Y , et al. Catalytic degradation of aqueous Fischer-Tropsch effluents to fuel gas over oxide-supported Ru catalysts and hydrothermal stability of catalysts[J]. J. Chem Technol Biotechnol, 2012, 87 (8): 1089- 1097.
doi: 10.1002/jctb.3719 |
10 |
QUEK X Y , PESTMAN R , VAN SANTEN R A , et al. Structure sensitivity in the ruthenium nanoparticle catalyzed aqueous-phase Fischer-Tropsch reaction[J]. Catal. Sci. Technol, 2014, 4 (10): 3510- 3523.
doi: 10.1039/C4CY00709C |
11 |
YAN L L , LIU J G , WANG X Z , et al. Ru catalysts supported by Si3N4 for Fischer-Tropsch synthesis[J]. Appl Surf Sci, 2020, 526, 146631.
doi: 10.1016/j.apsusc.2020.146631 |
12 |
WU F C , TSENG R L , JUANG R S . A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals[J]. J Environ Manage, 2010, 91 (4): 798- 806.
doi: 10.1016/j.jenvman.2009.10.018 |
13 | BHATNAGAR A , SILLANPää M . Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater-A short review[J]. Adv Colloid Interface Sci, 2009, 152 (1): 26- 38. |
14 | FU X H , LU L , GE Y Y , et al. Lignite resources and their physical properties in China[J]. Coal Sci Technol, 2012, 40 (10): 104- 108. |
傅雪海, 路露, 葛燕燕, 等. 我国褐煤资源及其物性特征[J]. 煤炭科学技术, 2012, 40 (10): 104- 108. | |
15 |
ZHAO T T , GE W Z , NIE Y X , et al. Highly efficient detoxification of Cr(Ⅵ) by brown coal and kerogen: Process and structure studies[J]. Fuel Process Technol, 2016, 150, 71- 77.
doi: 10.1016/j.fuproc.2016.05.001 |
16 |
ZHAO T T , GE W Z , YUE F , et al. Mechanism study of Cr(Ⅲ) immobilization in the process of Cr(Ⅵ) removal by Huolinhe lignite[J]. Fuel Process Technol, 2016, 152, 375- 380.
doi: 10.1016/j.fuproc.2016.06.037 |
17 | GE W Z , ZHAO T T , CHEN S , et al. The effect of adsorbed chromium on the pyrolysis behavior of brown coal and the recovery of chromium[J]. J Therm Anal Calorim, 2016, 128 (1): 513- 522. |
18 |
MAZZEI P , PICCOLO A . Interactions between natural organic matter and organic pollutants as revealed by NMR spectroscopy[J]. Magn Reson Chem, 2015, 53 (9): 667- 678.
doi: 10.1002/mrc.4209 |
19 | LI W , FENG X H , YAN Y P , et al. Solid-state NMR spectroscopic study of phosphate sorption mechanisms on aluminum (hydr)oxides[J]. Environ Sci Technol, 2013, 47 (15): 8308- 8315. |
20 |
MA H , QIAO Y , PEDERSEN C M , et al. The interaction between Fischer-Tropsch wastewater and humic acid: A NMR study of butanol isomers[J]. Fuel Process Technol, 2018, 179, 296- 301.
doi: 10.1016/j.fuproc.2018.07.019 |
21 |
ENGEBRETSON R R , VON WANDRUSZKA R . Micro-organization in dissolved humic acids[J]. Environ Sci Technol, 1994, 28 (11): 1934- 1941.
doi: 10.1021/es00060a026 |
22 |
PUCHALSKI M M , MORRA M J , VON WANDRUSZKA R . Fluorescence quenching of synthetic organic compounds by humic materials[J]. Environ Sci Technol, 1992, 26 (9): 1787- 1792.
doi: 10.1021/es00033a012 |
23 |
CHEN S , INSKEEP W P , WILLIAMS S A , et al. Fluorescence lifetime measurements of fluoranthene, 1-naphthol, and napropamide in the presence of dissolved humic acid[J]. Environ Sci Technol, 1994, 28 (9): 1582- 1588.
doi: 10.1021/es00058a008 |
24 |
HU J J , XU T W , CHENG Y Y . NMR insights into dendrimer-based host-guest systems[J]. Chem Rev, 2012, 112 (7): 3856- 3891.
doi: 10.1021/cr200333h |
25 | HUANG S S , YAO Y F , LI P , et al. Quantum chemical calculation and simulation of Liquid NMR HSQC experiment[J]. Chinese J Magn Reson, 2021, 35 (1): 32- 42. |
黄珊珊, 姚叶锋, 李鹏, 等. 液体核磁共振HSQC实验的量子化学计算与模拟[J]. 波谱学杂志, 2021, 38 (1): 32- 42. | |
26 | HU J J , CHENG Y Y , MA Y R , et al. Host-guest chemistry and physicochemical properties of the dendrimer-mycophenolic acid complex[J]. J Phys Chem B, 2009, 113 (1): 64- 74. |
27 |
SIMPSON M J , SIMPSON A J , HATCHER P G . Noncovalent interactions between aromatic compounds and dissolved humic acid examined by nuclear magnetic resonance spectroscopy[J]. Environ Toxicol Chem, 2004, 23 (2): 355.
doi: 10.1897/03-217 |
28 |
EGNER T K , NAIK P , NELSON N C , et al. Mechanistic insight into nanoparticle surface adsorption by solution NMR spectroscopy in an aqueous gel[J]. Angew Chem Int Edit, 2017, 56 (33): 9802- 9806.
doi: 10.1002/anie.201704471 |
29 | ZHANG F F , SHEN W B , XU K B , et al. A proton nuclear magnetic resonance method for quantitative analysis of ticagrelor[J]. Chinese J Magn Reson, 2020, 37 (2): 216- 223. |
张芬芬, 沈文斌, 徐开兵, 等. 定量核磁共振氢谱测定新药替格瑞洛[J]. 波谱学杂志, 2020, 37 (2): 216- 223. | |
30 |
CARPER W R , KELLER C E . Direct determination of NMR correlation times from spin-lattice and spin-spin relaxation times[J]. J Phys Chem A, 1997, 101 (18): 3246- 3250.
doi: 10.1021/jp963338h |
31 |
CARPER W R , NANTSIS E A . Direct-determination of 15N- and 19F-NMR correlation times from spin-lattice and spin-spin relaxation times[J]. J Phys Chem A, 1998, 102 (5): 812- 815.
doi: 10.1021/jp9720799 |
32 |
SIMPSON M J , SIMPSON A J , HATCHER P G . Noncovalent interactions between aromatic compounds and dissolved humic acid examined by nuclear magnetic resonance spectroscopy[J]. Environ Toxicol Chem, 2004, 23 (2): 355- 362.
doi: 10.1897/03-217 |
33 | CHEN X Y , YU J G , MAO S Z , et al. 1H NMR explores the influence of steric effect on the synergistic effect of surfactant compound system[J]. Chinese J Magn Reson, 2018, 35 (1): 75- 80. |
陈晓瑛, 俞刚金, 毛诗珍, 等. 1H NMR探究空间效应对表面活性剂复配体系中协同作用的影响[J]. 波谱学杂志, 2018, 35 (1): 75- 80. | |
34 | NING C F , MA M J , GUO Z H , et al. NMR study on the interaction between PAMAM dendrimer and 5-fluorouracil[J]. Chinese J Magn Reson, 2019, 36 (4): 555- 562. |
宁彩芳, 马敏珺, 郭朝晖, 等. PAMAM树状大分子与5-氟尿嘧啶相互作用的NMR研究[J]. 波谱学杂志, 2019, 36 (4): 555- 562. | |
35 |
LIU P , PEDERSEN C M , ZHANG J , et al. Ternary deep eutectic solvents catalyzed d-glucosamine self-condensation to deoxyfructosazine: NMR study[J]. Green Energy Environ, 2020,
doi: 10.1016/j.gee.2020.04.010 |
36 |
NANNY M A , BORTIATYNSKI J M , HATCHER P G . Noncovalent interactions between acenaphthenone and dissolved fulvic acid as determined by 13C NMR T1 relaxation measurements[J]. Environ Sci Technol, 1997, 31 (2): 530- 534.
doi: 10.1021/es960391a |
37 |
MAZZEI P , PICCOLO A . Quantitative evaluation of noncovalent interactions between glyphosate and dissolved humic substances by NMR spectroscopy[J]. Environ. Sci. Technol, 2012, 46 (11): 5939- 5946.
doi: 10.1021/es300265a |
38 | ŠMEJKALOVÁ D , PICCOLO A . Host-guest interactions between 2, 4-dichlorophenol and humic substances as evaluated by 1H NMR relaxation and diffusion ordered spectroscopy[J]. Environ Sci Technol, 2008, 42 (22): 8440- 8445. |
39 |
SMEJKALOVA D , SPACCINI R , FONTAINE B , et al. Binding of phenol and differently halogenated phenols to dissolved humic matter as measured by NMR spectroscopy[J]. Environ Sci Technol, 2009, 43 (14): 5377- 5382.
doi: 10.1021/es900559b |
40 | NANNY M A , LEENHEER J A , MINARD R A . Nuclear magnetic resonance spectroscopy in environment chemistry[M]. New York: Oxford University Press Inc., 1997. |
[1] | 随松,高国梁,王雪璐,魏达秀,姚叶锋. 固-液-气三相环境下非均相苯加氢反应的原位核磁共振研究[J]. 波谱学杂志, 2021, 38(2): 194-203. |
[2] | 窦梦雨,赵奇,侯相林,刘雷,唐明兴,王英雄. 蒽加氢产物的结构指认和定量核磁共振分析[J]. 波谱学杂志, 2021, 38(2): 239-248. |
[3] | 李玉江, 赵伟, 郭晓河, 陶乐, 张祥, 张海艳, 赵天增. 盐酸马尼地平的核磁共振数据解析[J]. 波谱学杂志, 2021, 38(1): 110-117. |
[4] | 王睿迪, 徐贝贝, 宋艳红, 王雪璐, 姚叶锋. 原位核磁共振技术研究光催化甲醇重整过程中甲醇与水的相互作用[J]. 波谱学杂志, 2021, 38(1): 43-57. |
[5] | 黄珊珊, 姚叶锋, 李鹏, 何培忠. 液体核磁共振 HSQC 实验的量子化学计算与模拟[J]. 波谱学杂志, 2021, 38(1): 32-42. |
[6] | 周中高, 谢倩, 元洋洋, 李静, 路东亮, 陈正旺. 吡喃葡糖基氮杂环卡宾-钯(II)-吡啶配合物的NMR研究[J]. 波谱学杂志, 2020, 37(4): 505-514. |
[7] | 杨以宁, 王雪璐, 姚叶锋. 原位核磁共振技术研究反应环境对光催化甲醇重整过程的影响[J]. 波谱学杂志, 2020, 37(1): 104-113. |
[8] | 宁彩芳, 马敏珺, 郭朝晖, 张书怀, 乔岩, 王英雄. PAMAM树状大分子与5-氟尿嘧啶相互作用的NMR研究[J]. 波谱学杂志, 2019, 36(4): 555-562. |
[9] | 林晓晴, 李弘, 詹昊霖, 杜世佳, 黄玉清, 陈忠. 高分辨率核磁共振纯化学位移谱新方法及其应用[J]. 波谱学杂志, 2019, 36(4): 425-436. |
[10] | 万至彬, 宋建会, 郭鸣明. 原位液体核磁共振在高分子材料表征领域的应用[J]. 波谱学杂志, 2019, 36(3): 408-424. |
[11] | 刘文卿, 宋艳红, 王雪璐, 姚叶锋. 光催化甲醇重整机理的原位核磁共振研究[J]. 波谱学杂志, 2019, 36(3): 298-308. |
[12] | 陈晓瑛, 俞刚金, 毛诗珍, 刘买利, 杜有如. 利用1H NMR探究混合离子型/非离子型表面活性剂临界胶束浓度降低的实质[J]. 波谱学杂志, 2019, 36(2): 219-224. |
[13] | 俞刚金, 周志明, 吕明, 钱胜涛, 孔渝华, 张许, 毛诗珍, 刘买利. 煤基乙二醇中杂质1,2-丁二醇的NMR定性定量分析[J]. 波谱学杂志, 2019, 36(1): 55-64. |
[14] | 魏会强, 于江, 毕常芬, 宁洪鑫, 李祎亮, 刘强. N-异丁酰基-3'-O-(1-氟-1,1,3,3-四异丙基-1,3-二硅氧烷-3-基)-2'-苄氧羰基鸟苷的NMR研究[J]. 波谱学杂志, 2019, 36(1): 93-102. |
[15] | 李红卫, 袁志良, 夏斌. 扩散序谱(DOSY)实验测定缓冲体系中蛋白质表观分子量[J]. 波谱学杂志, 2018, 35(3): 280-286. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||