波谱学杂志 ›› 2015, Vol. 32 ›› Issue (2): 181-194.doi: 10.11938/cjmr20150204
彭俊辉,赵德彪,文彬,张志勇*
收稿日期:
2015-02-06
修回日期:
2015-05-08
出版日期:
2015-06-05
发布日期:
2015-06-05
作者简介:
*通讯联系人:张志勇,电话:+86-551-63600854,E-mail: zzyzhang@ustc.edu.cn.
基金资助:
The National Key Basic Research Program of China (2013CB910203), the National Natural Science Foundation of China (31270760), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB08030102), the Specialized Research Fund for the Doctoral Program of Higher Education (20113402120013).
PENG Jun-hui,ZHAO De-biao,WEN Bin,ZHANG Zhi-yong*
Received:
2015-02-06
Revised:
2015-05-08
Online:
2015-06-05
Published:
2015-06-05
About author:
PENG Jun-hui (1989-), male, born in Jiangxi, PhD., his research focuses on Computational Biology, Tel: +86-551-63600854, E-mail: jhpanda@mail.ustc.edu.cn.
*Corresponding author.: ZHANG Zhi-yong, Tel: +86-551-63600854, E-mail: zzyzhang@ustc.edu.cn.
Supported by:
The National Key Basic Research Program of China (2013CB910203), the National Natural Science Foundation of China (31270760), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB08030102), the Specialized Research Fund for the Doctoral Program of Higher Education (20113402120013).
摘要:
近年来,结构生物学研究越来越注重生物大分子复合物的解析,因为许多重要生物学过程都离不开复合物的参与.溶液核磁共振是目前重要的结构解析方法之一.X射线小角散射(SAXS)作为一种新的结构生物学实验手段,近年来发展迅速.SAXS 能提供生物大分子复合物的较低分辨率结构信息,而核磁共振能解析复合物中各个亚基的原子分辨率结构.此外,通过核磁共振还能得到亚基之间的界面、取向以及距离信息.因此近年来通过计算机模拟,整合核磁共振和SAXS 不同分辨率的结构信息,可以用来搭建生物大分子复合物的结构模型.该综述重点介绍这方面的研究进展.
中图分类号:
彭俊辉,赵德彪,文彬,张志勇*. 核磁共振、X 射线小角散射以及计算机模拟相结合构建生物大分子复合物的结构模型[J]. 波谱学杂志, 2015, 32(2): 181-194.
PENG Jun-hui,ZHAO De-biao,WEN Bin,ZHANG Zhi-yong*. Determining Structural Models of Biomolecular Complexes Integrating Nuclear Magnetic Resonance, Small-Angle X-ray Scattering and Computational Simulations[J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 181-194.
[1] Robinson C V, Sali A, Baumeister W. The molecular sociology of the cell[J]. Nature, 2007, 450: 973-982.[2] Alberts B. Molecular Biology of the Cell (4th ed)[M]. New York: Garland Science; 2002.[3] Kuehlbrandt W. Cryo-em enters a new era[J]. Elife, 2014, 3.[4] Mertens H D T, Svergun D I. Structural characterization of proteins and complexes using small-angle X-ray solution scattering[J]. J Struct Biol, 2010, 172: 128-141.[5] Graewert M A, Svergun D I. Impact and progress in small and wide angle X-ray scattering (saxs and waxs) [J]. Curr Opin Struc Biol, 2013, 23: 748-754.[6] Ward A B, Sali A, Wilson I A. Integrative structural biology[J]. Science, 2013, 339: 913-915.[7] Dominguez C, Boelens R, Bonvin A M. Haddock: A protein-protein docking approach based on biochemical or biophysical information[J]. J Am Chem Soc, 2003, 125: 1 731-1 737.[8] De Vries S J, van Dijk M, Bonvin A M J J. The haddock web server for data-driven biomolecular docking[J]. Nat Protoc, 2010, 5: 883-897.[9] Russel D, Lasker K, Webb B, et al. Putting the pieces together: Integrative modeling platform software for structure determination of macromolecular assemblies[J]. PLoS Biol, 2012, 10.[10] Zhao D B, Wang X J, Peng J H, et al. Structural investigation of the interaction between the tandem sh3 domains of c-cbl-associated protein and vinculin[J]. J Struct Biol, 2014, 187: 194-205.[11] Zuiderweg E R P. Mapping protein-protein interactions in solution by nmr spectroscopy[J]. Biochemistry-us, 2002, 41: 1-7.[12] Pellecchia M, Montgomery D L, Stevens S Y, et al. Structural insights into substrate binding by the molecular chaperone dnak[J]. Nat Struct Biol, 2000, 7: 298-303.[13] Nguyen C, Haushalter R W, Lee D J, et al. Trapping the dynamic acyl carrier protein in fatty acid biosynthesis[J]. Nature, 2014, 505: 427-431. [14] Chou J J, Gaemers S, Howder B, et al. A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles[J]. J Biomol NMR, 2001, 21: 377-382.[15] Ruckert M, Otting G. Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments[J]. J Am Chem Soc, 2000, 122: 7 793-7 797.[16] Fushman D, Varadan R, Assfalg M, et al. Determining domain orientation in macromolecules by using spin-relaxation and residual dipolar coupling measurements[J]. Prog Nucl Mag Res Spectrosc, 2004, 44: 189-214.[17] Dosset P, Hus J C, Marion D, et al. A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings[J]. J Biomol NMR, 2001, 20: 223-231.[18] Valafar H, Prestegard J H. Redcat: A residual dipolar coupling analysis tool[J]. J Magn Reson, 2004, 167: 228-241.[19] Ramirez B E, Bax A. Modulation of the alignment tensor of macromolecules dissolved in a dilute liquid crystalline medium[J]. J Am Chem Soc, 1998, 120: 9 106-9 107.[20] Liu Z, Tang C. Paramagnetic relaxation enhancement——A tool for visualizing transient protein structures[J]. Chinese J Magn Reson, 2011, 28(3): 301-316.[21] Yang Y, Chen J L, Su X C. Paramagnetic labeling of proteins and pseudocontact shift in structural biology[J]. Chinese J Magn Reson, 2014, 31(2): 155-171.[22] Iwahara J, Tang C, Clore G M. Practical aspects of 1H transverse paramagnetic relaxation enhancement measurements on macromolecules[J]. J Magn Reson, 2007, 184: 185-195.[23] Clore G M, Iwahara J. Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes[J]. Chem Rev, 2009, 109: 4 108-4 139.[24] Hass M A S, Ubbink M. Structure determination of protein-protein complexes with long-range anisotropic paramagnetic nmr restraints[J]. Curr Opin Struc Biol, 2014, 24: 45-53.[25] Saio T, Yokochi M, Kumeta H, et al. Pcs-based structure determination of protein-protein complexes[J]. J Biomol NMR, 2010, 46: 271-280.[26] Kay L E. Solution nmr spectroscopy of supra-molecular systems, why bother? A methyl-trosy view[J]. J Magn Reson, 2011, 210: 159-170.[27] Sprangers R, Velyvis A, Kay L E. Solution nmr of supramolecular complexes: Providing new insights into function[J]. Nat Methods, 2007, 4: 697-703.[28] Tugarinov V, Kay L E. An isotope labeling strategy for methyl trosy spectroscopy[J]. J Biomol NMR, 2004, 28: 165-172.[29] Ayala I, Sounier R, Use N, et al. An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein[J]. J Biomol NMR, 2009, 43: 111-119.[30] Gans P, Hamelin O, Sounier R, et al. Stereospecific isotopic labeling of methyl groups for nmr spectroscopic studies of high-molecular-weight proteins[J]. Angew Chem Int Ed, 2010, 49: 1 958-1 962.[31] Tugarinov V, Hwang P M, Ollerenshaw J E, et al. Cross-correlated relaxation enhanced 1H-13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes[J]. J Am Chem Soc, 2003, 125: 10 420-10 428.[32] Shi L C, Kay L E. Tracing an allosteric pathway regulating the activity of the hslv protease[J]. Proc Natl Acad Sci, 2014, 111: 2 140-2 145.[33] Velyvis A, Kay L E. Measurement of active site ionization equilibria in the 670 kda proteasome core particle using methyl-trosy NMR[J]. J Am Chem Soc, 2013, 135: 9 259-9 262.[34] Velyvis A, Schachman H K, Kay L E. Application of methyl-trosy NMR to test allosteric models describing effects of nucleotide binding to aspartate transcarbamoylase[J]. J Mol Biol, 2009, 387: 540-547.[35] Lipfert J, Doniach S. Small-angle X-ray scattering from rna, proteins, and protein complexes[J]. Annu Rev Biophys Biomol Struct, 2007, 36: 307-327.[36] Schneidman-Duhovny D, Kim S J, Sali A. Integrative structural modeling with small angle X-ray scattering profiles[J]. BMC Struct Biol, 2012, 12.[37] Putnam C D, Hammel M, Hura G L, et al. X-ray solution scattering (SAXS) combined with crystallography and computation: Defining accurate macromolecular structures, conformations and assemblies in solution[J]. Q Rev Biophys, 2007, 40: 191-285.[38] Rambo R P, Tainer J A. Characterizing flexible and intrinsically unstructured biological macromolecules by sas using the porod-debye law[J]. Biopolymers, 2011, 95: 559-571.[39] Forster F, Webb B, Krukenberg K A, et al. Integration of small-angle X-ray scattering data into structural modeling of proteins and their assemblies[J]. J Mol Biol, 2008, 382: 1 089-1 106.[40] Svergun D I. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing[J]. Biophys J, 1999, 76(6): 2 879-2 886; 1999, 77(5): 2 896.[41] Franke D, Svergun D I. Dammif, a program for rapid ab-initio shape determination in small-angle scattering[J]. J Appl Crystallogr, 2009, 42: 342-346.[42] Svergun D I, Petoukhov M V, Koch M H J. Determination of domain structure of proteins from X-ray solution scattering[J]. Biophys J, 2001, 80: 2 946-2 953.[43] Zheng W J, Doniach S. Fold recognition aided by constraints from small angle X-ray scattering data[J]. Protein Eng Des Sel, 2005, 18: 209-219.[44] Petoukhov M V, Svergun D I. Global rigid body modeling of macromolecular complexes against small-angle scattering data[J]. Biophys J, 2005, 89: 1 237-1 250.[45] Bernado P, Mylonas E, Petoukhov M V, et al. Structural characterization of flexible proteins using small-angle X-ray scattering[J]. J Am Chem Soc, 2007, 129: 5 656-5 664.[46] Zheng W J, Tekpinar M. Accurate flexible fitting of high-resolution protein structures to small-angle X-ray scattering data using a coarse-grained model with implicit hydration shell[J]. Biophys J, 2011, 101: 2 981-2 991.[47] Wen B, Peng J H, Zuo X B, et al. Characterization of protein flexibility using small-angle X-ray scattering and amplified collective motion simulations[J]. Biophys J, 2014, 107: 956-964.[48] Guinier A. La diffraction des rayons X aux très petits angles: Application à l'étude de phénomènes ultramicroscopiques[J]. Ann Phys, 1939, 12: 161-237.[49] Svergun D I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria[J]. Appl Crystallogr, 1992, 25: 495-503.[50] Fischer H, Neto M D, Napolitano H B, et al. Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale[J]. J Appl Crystallogr, 2010, 43: 101-109.[51] Svergun D, Barberato C, Koch M H J. CRYSOL — A program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates[J]. J Appl Crystallogr, 1995, 28: 768-773.[52] Grishaev A, Wu J, Trewhella J, et al. Refinement of multidomain protein structures by combination of solution small-angle X-ray scattering and nmr data[J]. J Am Chem Soc, 2005, 127: 16 621-16 628.[53] Yang S, Park S, Makowski L, et al. A rapid coarse residue-based computational method for X-ray solution scattering characterization of protein folds and multiple conformational states of large protein complexes[J]. Biophys J, 2009, 96: 4 449-4 463.[54] Grishaev A, Guo L A, Irving T, et al. Improved fitting of solution X-ray scattering data to macromolecular structures and structural ensembles by explicit water modeling[J]. J Am Chem Soc, 2010, 132: 15 484-15 486.[55] Schneidman-Duhovny D, Hammel M, Sali A. Foxs: A web server for rapid computation and fitting of saxs profiles[J]. Nucleic Acids Res, 2010, 38: W540-W544.[56] Schwieters C D, Suh J Y, Grishaev A, et al. Solution structure of the 128 kda enzyme i dimer from escherichia coli and its 146 kda complex with hpr using residual dipolar couplings and small- and wide-angle X-ray scattering[J]. J Am Chem Soc, 2010, 132: 13 026-13 045.[57] Chacon P, Moran F, Diaz J F, et al. Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm[J]. Biophys J, 1998, 74: 2 760-2 775.[58] Kozin M B, Svergun D I. Automated matching of high- and low-resolution structural models[J]. J Appl Crystallogr, 2001, 34: 33-41.[59] Wriggers W, Milligan R A, McCammon J A. Situs: A package for docking crystal structures into low-resolution maps from electron microscopy[J]. J Struct Biol, 1999, 125: 185-195.[60] Wriggers W, Chacon P. Using situs for the registration of protein structures with low-resolution bead models from X-ray solution scattering[J]. J Appl Crystallogr, 2001, 34: 773-776.[61] Konarev P V, Petoukhov M V, Volkov V V, et al. Atsas 2.1, a program package for small-angle scattering data analysis[J]. J Appl Crystallogr, 2006, 39: 277-286.[62] Pons C, D'Abramo M, Svergun D I, et al. Structural characterization of protein-protein complexes by integrating computational docking with small-angle scattering data[J]. J Mol Biol, 2010, 403: 217-230.[63] Schneidman-Duhovny D, Hammel M, Sali A. Macromolecular docking restrained by a small angle X-ray scattering profile[J]. J Struct Biol, 2011, 173: 461-471.[64] Webb B, Lasker K, Schneidman-Duhovny D, et al. Modeling of proteins and their assemblies with the integrative modeling platform[J]. Methods Mol Biol, 2011, 781: 377-397.[65] de Vries S J, Bonvin A M. Cport: A consensus interface predictor and its performance in prediction-driven docking with HADDOCK[J]. PLoS One, 2011, 6(3): e17695.[66] Gorba C, Miyashita O, Tama F. Normal-mode flexible fitting of high-resolution structure of biological molecules toward one-dimensional low-resolution data[J]. Biophys J, 2008, 94: 1 589-1 599.[67] Pelikan M, Hura G L, Hammel M. Structure and flexibility within proteins as identified through small angle X-ray scattering[J]. Gen Physiol Biophys, 2009, 28: 174-189.[68] Yang S C, Blachowicz L, Makowski L, et al. Multidomain assembled states of hck tyrosine kinase in solution[J]. Proc Natl Acad Sci, 2010, 107: 15 757-15 762.[69] Ró?ycki B, Kim Y C, Hummer G. Saxs ensemble refinement of escrt-iii chmp3 conformational transitions[J]. Structure, 2011, 19: 109-116.[70] Carisey A, Ballestrem C. Vinculin, an adapter protein in control of cell adhesion signalling[J]. Eur J Cell Biol, 2011, 90: 157-163.[71] Borgon R A, Vonrhein C, Bricogne G, et al. Crystal structure of human vinculin[J]. Structure, 2004, 12: 1 189-1 197.[72] Baumann C A, Ribon V, Kanzaki M, et al. Cap defines a second signalling pathway required for insulin-stimulated glucose transport[J]. Nature, 2000, 407: 202-207.[73] Zhang M, Liu J, Cheng A, et al. Identification of cap as a costameric protein that interacts with filamin c[J]. Mol Biol Cell, 2007, 18: 4 731-4 740.[74] Mandai K, Nakanishi H, Satoh A, et al. Ponsin/sh3p12: An 1-afadin- and vinculin-binding protein localized at cell-cell and cell-matrix adherens junctions[J]. J Cell Biol, 1999, 144: 1 001-1 017. [75] Eswar N, Webb B, Marti-Renom M A, et al. Comparative protein structure modeling using MODELLER: Chapter 5: Unit 5.6[M]. Curr Protoc Bioinformatics, John Wiley & Sons Inc, 2006.[76] Brunger A T. Version 1.2 of the crystallography and NMR system[J]. Nat Protoc, 2007, 2: 2 728-2 733.[77] Schwieters C D, Kuszewski J J, Tjandra N, et al. The xplor-nih NMR molecular structure determination package[J]. J Magn Reson, 2003, 160: 65-73.[78] Takamoto K, Chance M R. Radiolytic protein footprinting with mass spectrometry to probe the structure of macromolecular complexes[J]. Annu Rev Bioph Biom Struct, 2006, 35: 251-276.[79] Vandermarliere E, Stes E, Gevaert K, et al. Resolution of protein structure by mass spectrometry[J]. Mass Spectrom Rev, 2014.[80] Lasker K, Phillips J L, Russel D, et al. Integrative structure modeling of macromolecular assemblies from proteomics data[J]. Mol Cell Proteomics, 2010, 9: 1 689-1 702.[81] Alber F, Dokudovskaya S, Veenhoff L M, et al. Determining the architectures of macromolecular assemblies[J]. Nature, 2007, 450 :683-694. |
[1] | 胡坤, 孙汉董, 普诺·白玛丹增. 量子化学计算核磁共振参数在天然产物结构鉴定中的应用[J]. 波谱学杂志, 2019, 36(3): 359-376. |
[2] | 尹田鹏, 王雅溶, 王敏, 石文智, 张正茜, 何莎莎. 三个C19-二萜生物碱的NMR数据全归属[J]. 波谱学杂志, 2019, 36(3): 331-340. |
[3] | 杨云汉, 杜瑶, 应飞祥, 杨俊丽, 夏大真, 夏福婷, 杨丽娟. 柚皮素/β-环糊精超分子体系的包合行为[J]. 波谱学杂志, 2019, 36(3): 319-330. |
[4] | 王亚兰, 王晓静, 王志伟. 阿齐沙坦的波谱学数据及结构确证[J]. 波谱学杂志, 2019, 36(3): 350-358. |
[5] | 曹园, 吴永平, 陈东军. 卷柏属Selaginellin类化合物互变异构的波谱学研究[J]. 波谱学杂志, 2019, 36(2): 155-163. |
[6] | 寇新慧, 刘乙祥, 刘兴弘, 李从刚, 刘买利, 姜凌. 探测应答调控蛋白PhoBNF20D自由态中存在的Pre-Active构象[J]. 波谱学杂志, 2019, 36(2): 164-171. |
[7] | 陈晓瑛, 俞刚金, 毛诗珍, 刘买利, 杜有如. 利用1H NMR探究混合离子型/非离子型表面活性剂临界胶束浓度降低的实质[J]. 波谱学杂志, 2019, 36(2): 219-224. |
[8] | 迟秀娟, 乔晓亚, 刘颖, 刘惠丽, 陈雷, 王际辉, 艾选军. 拟南芥AtGrp7 RRM结构域的纯化及其结构与结合的初步分析(英文)[J]. 波谱学杂志, 2019, 36(1): 1-14. |
[9] | 尹田鹏, 汪泽, 陈阳, 邵娅婷, 邓亮, 黎唯. 10-吲哚细胞松弛素chaetoglobosin F的NMR解析[J]. 波谱学杂志, 2019, 36(1): 74-82. |
[10] | 尹田鹏, 罗智慧, 蔡乐, 丁中涛. 天然C19-二萜生物碱的研究进展及其核磁共振波谱特征[J]. 波谱学杂志, 2019, 36(1): 113-126. |
[11] | 冉梦琳, 覃凌云, 唐淳, 董旭. 磷酸化调控泛素单体与Rad23A/Ubiquilin-1中泛素结合域互作的检测[J]. 波谱学杂志, 2019, 36(1): 15-22. |
[12] | 魏会强, 于江, 毕常芬, 宁洪鑫, 李祎亮, 刘强. N-异丁酰基-3'-O-(1-氟-1,1,3,3-四异丙基-1,3-二硅氧烷-3-基)-2'-苄氧羰基鸟苷的NMR研究[J]. 波谱学杂志, 2019, 36(1): 93-102. |
[13] | 李英俊, 杨凯栋, 靳焜, 刘季红, 王思远, 张楠. 基于咔唑-靛红双-硫代碳酰腙衍生物的NMR研究[J]. 波谱学杂志, 2019, 36(1): 83-92. |
[14] | 王伟宇, 胡涵, 徐君, 邓风. Pd-Cu双金属催化剂上加氢反应的仲氢诱导超极化研究[J]. 波谱学杂志, 2018, 35(3): 269-279. |
[15] | 朱云峰, 何为, 何传红, 王怡, 齐天昊, 陈柏冰, 徐征. 基于数字调制技术的核磁共振射频脉冲发生器[J]. 波谱学杂志, 2018, 35(3): 318-327. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||