波谱学杂志 ›› 2012, Vol. 29 ›› Issue (3): 307-338.
• 特邀综述 • 下一篇
张荣纯,孙平川
收稿日期:
2011-09-14
修回日期:
2011-12-19
出版日期:
2012-09-05
发布日期:
2012-09-05
基金资助:
国家杰出青年科学基金资助项目(20825416).
ZHANG Rong-Chun, SUN Ping-Chuan
Received:
2011-09-14
Revised:
2011-12-19
Online:
2012-09-05
Published:
2012-09-05
Supported by:
国家杰出青年科学基金资助项目(20825416).
摘要:
随着固体NMR理论和谱仪硬件技术的不断发展,近年来固体NMR技术在高分子多尺度结构与动力学研究领域中正发挥着越来越重要的作用. 多脉冲及高速魔角旋转(MAS)等质子高分辨技术的发展使得高灵敏度的1H谱可有效地用于高分子化学结构与链间相互作用的检测;基于化学键(J-耦合)相关和通过空间(偶极耦合)相互作用的各种二维异核相关谱NMR新技术,使得复杂高分子的链结构得以严格解析. 基于MAS下同核和异核偶极-偶极相互作用、化学位移各向异性等各向异性相互作用重聚的系列新技术,使得研究者可在采用高分辨1H或13C 检测信号的同时检测准静态下的各向异性相互作用,进而获得与之密切相关的结构和动力学信息. 通过质子偶极滤波技术可有效检测多相聚合物中的界面相与相区尺寸、高分子共混物中的相容性等问题. 在动力学的研究中,通过质子间自旋扩散的有效压制技术和化学位移各向异性的重聚,目前已经可以有效地获取链段上单个化学键的快速局域运动以及链段的超慢分子运动. 上述丰富的多尺度NMR技术可以使研究者在不同空间和时间尺度上对高分子聚合物的微观结构、相分离和动力学行为等进行详细的研究,进而阐明高分子微观结构与宏观性能的关联. 该文以固体NMR中最主要的2类核(1H和13C)的检测技术为主线,简单介绍近年来固体NMR领域的一些最新研究进展及其在高分子结构和动力学研究中的应用.
中图分类号:
张荣纯, 孙平川. 先进固体NMR技术研究高分子结构与动力学[J]. 波谱学杂志, 2012, 29(3): 307-338.
ZHANG Rong-Chun, SUN Ping-Chuan. Applications of Advanced Solid-State NMR Techniques in Studying the Structure and Dynamics of Polymers[J]. Chinese Journal of Magnetic Resonance, 2012, 29(3): 307-338.
[1] Schmidt-Rohr K, Spiess H W. Multidimensional Solid-State NMR and Polymers[M]. London: Academic Press, 1994. ![]() [13] Jia Z, Zhang L, Chen Q, et al. Proton spin diffusion in polyethylene as a function of magic-angle spinning rate. A phenomenological approach[J]. J Phys Chem A, 2008, 112(6): 1 228-1 233. [14] Wang X L, Tao F F, Sun P C, et al. Probing chain interpenetration in polymer glasses by H-1 dipolar filter solid-state NMR under fast magic angle spinning[J]. Macromolecules, 2007, 40(14): 4 736-4 739. [15] Fu W G, Jiang R, Chen T H, et al. Evolution of interphase in styrene-butadiene block copolymers as revealed by 1H solid-state NMR: Effect of temperature and molecular architecture ![]() [16] Yao Y, Graf R, Spiess H, et al. Influence of crystal thickness and topological constraints on chain diffusion in linear polyethylene[J]. Macromol Rapid Commun, 2009, 30(13): 1 123-1 127. [17] Zhang L, Liu Z, Chen Q, et al. Quantitative determination of phase content in multiphase polymers by combining spin-diffusion and CPMAS NMR[J]. Macromolecules, 2007, 40(15): 5 411-5 419. [18] Ru G, Wang N, Huang S, et al. 1H HRMAS NMR study on phase transition of poly(N-isopropylacrylamide) gels with and without grafted comb-type chains[J]. Macromolecules, 2009, 42(6): 2 074-2 078. [19] Gao X, Wang L, Luo H, et al. Crystalline phases in ethylene copolymers studied by solid-state NMR and DSC[J]. Macromolecules, 2010, 43(13): 5 713-5 722. [20] Andrew E R, Bradbury A, Eades R G. Nuclear magnetic resonance spectra from a crystal rotated at high speed[J]. Nature, 1958, 182(4650): 1 659-1 659. [21] Lowe I J. Free induction decays of rotating solids[J]. Phys Rev lett, 1959, 2(7): 285-287. [22] Lesage A, Sakellariou D, Hediger S, et al. Experimental aspects of proton NMR spectroscopy in solids using phase-modulated homonuclear dipolar decoupling[J]. J Magn Reson, 2003, 163(1): 105-113. [23] Gerstein B C. High resolution NMR in randomly oriented solids with homonuclear dipolar broadening: Combined multiple pulse NMR and magic angle spinning[J]. J Chem Phys, 1977, 66(1): 361-362. [24] Waugh J S, Huber L M, Haeberlen U. Approach to high-resolution NMR in solids[J]. Phys Rev Lett, 1968, 20(5): 180. [25] Mansfield P. Symmetrized pulse sequences in high resolution NMR in solids[J]. J Phys A: Solid State Phys, 1971, 4(11): 1 444-1 452. [26] Rhim W K, Elleman D D, Vaughan R W. Enhanced resolution for solid state NMR[J]. J Chem Phys, 1973, 58(4): 1 772-1 773. [27] Burum D P, Rhim W K. Analysis of multiple pulse NMR in solids. III[J]. J Chem Phys, 1979, 71(2): 944-956. [28] Hohwy M, Bower P V, Jakobsen H J, et al. A high-order and broadband CRAMPS experiment using z-rotational decoupling[J]. Chem Phys Lett, 1997, 273(5-6): 297-303. [29] Hohwy M, Nielsen N C. Elimination of high order terms in multiple pulse nuclear magnetic resonance spectroscopy: Application to homonuclear decoupling in solids[J]. J Chem Phys, 1997, 106(18): 7 571-7 586. [30] Bielecki A, Kolbert A C, Levitt M H. Frequency-switched pulse sequences: Homonuclear decoupling and dilute spin NMR in solids[J]. Chem Phys Lett, 1989, 155(4-5): 341-346. [31] Bielecki A K A C, DeGroot H J M. Frequency-switched Lee-Goldburg sequence in solids ![]() [32] Vinogradov E, Madhu P K, Vega S. High-resolution proton solid-state NMR spectroscopy by phase-modulated Lee-Goldburg experiment[J]. Chem Phys Lett, 1999, 314(5-6): 443-450. [33] Vinogradov E, Madhu P K, Vega S. Proton spectroscopy in solid state nuclear magnetic resonance with windowed phase modulated Lee-Goldburg decoupling sequences[J]. Chem Phys Lett, 2002, 354(3-4): 193-202. [34] Paul S, Schneider D, Madhu P K.1H Homonuclear dipolar decoupling using symmetry-based pulse sequences at ultra fast magicangle spinning frequencies[J]. J Magn Reson, 2010, 206(2): 241-245. [35] Sakellariou D, Lesage A, Hodgkinson P, et al. Homonuclear dipolar decoupling in solid-state NMR using continuous phase modulation[J]. Chem Phys Lett, 2000, 319(3-4): 253-260. [36] Elena B, de Pa-pe G, Emsley L. Direct spectral optimisation of proton-proton homonuclear dipolar decoupling in solid-state NMR[J]. Chem Phys Lett, 2004, 398(4-6): 532-538. [37] Salager E, Stein R S, Steuernagel S, et al. Enhanced sensitivity in high-resolution 1H solid-state NMR spectroscopy with DUMBO dipolar decoupling under ultrafast MAS[J]. Chem Phys Lett, 2009, 469(4-6): 336-341. [38] Gerstein B C, Pembleton R G, Wilson R C, et al. High resolution NMR in randomly oriented solids with homonuclear dipolar broadening: Combined multiple pulse NMR and magic angle spinning[J]. J Chem Phys, 1977, 66(1): 361-362. [39] Taylor R E, Pembleton R G, Ryan L M, et al. Combined multiple pulse NMR and sample spinning: Recovery of 1H chemical shift tensors[J]. J Chem Phys, 1979, 71(11): 4 541-4 545. [40] Hoult D I, Richards R E. Critical factors in the design of sensitive high resolution nuclear magnetic resonance spectrometers[J]. Proc R Soc London Ser A, 1975, 344(1638): 311-340. [41] Ryan L M, Taylor R E, Paff A J, et al. An experimental study of resolution of proton chemical shifts in solids: Combined multiple pulse NMR and magic-angle spinning[J]. J Chem Phys, 1980, 72(1): 508-515. [42] Madhu P K, Zhao X, Levitt M H. High-resolution 1H NMR in the solid state using symmetry-based pulse sequences[J]. Chem Phys Lett, 2001, 346(1-2): 142-148. [43] Paul S, Thakur R S, Madhu P K. 1H homonuclear dipolar decoupling at high magic-angle spinning frequencies with rotor-synchronised symmetry sequences[J]. Chem Phys Lett, 2008, 456(4-6): 253-256. [44] Amoureux J P, Hu B, Trébosc J. Enhanced resolution in proton solid-state NMR with very-fast MAS experiments[J]. J Magn Reson, 2008, 193(2): 305-307. [45] Amoureux J P, Hu B, Trébosc J, et al. Homonuclear dipolar decoupling schemes for fast MAS[J]. Solid State Nucl Magn Reson, 2009, 35(1): 19-24. [46] Gan Z H, Madhu P K, Amoureux J P, et al. A tunable homonuclear dipolar decoupling scheme for high-resolution proton NMR of solids from slow to fast magic-angle spinning[J]. Chem Phys Lett, 2011, 503(1-3): 167-170. [47] Caravatti P, Neuenschwander P, Ernst R R. Characterization of heterogeneous polymer blends by two-dimensional proton spin diffusion spectroscopy[J]. Macromolecules, 1985, 18(1): 119-122. [48] Caravatti P, Neuenschwander P, Ernst R R. Charcterization of polymer blends by selective proton spin-diffusion NMR measurements[J]. Macromolecules, 1986, 19(7): 1 889-1 895. [49] Xu Lu(徐璐). Combined Solid-State NMR and Quantum Chemical Calculation Studies of Microstructure, Hydrogen Bond and Segmental Motion in Polymers(量化计算结合固体NMR研究高分子微观结构、氢键与链运动)[D]. Tianjin(天津):Nankai University(南开大学), 2010. [50] Sommer W, Gottwald J, Demco D E, et al. Dipolar heteronuclear multiple-quantum NMR spectroscopy in rotating solids[J]. J Magn Reson Ser A, 1995, 113(1): 131-134. [51] Saalw-chter K, Lange F, Matyjaszewski K, et al. BaBa-xy16: Robust and broadband homonuclear DQ recoupling for applications in rigid and soft solids up to the highest MAS frequencies[J]. J Magn Reson, 2011, 212(1): 204-215. [52] Lee Y K, Kurur N D, Helmle M, et al. Efficient dipolar recoupling in the NMR of rotating solids. A sevenfold symmetric radiofrequency pulse sequence[J]. Chem Phys Lett, 1995, 242(3): 304-309. [53] Hohwy M, Jakobsen H J, Eden M, et al. Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: A compensated C7 pulse sequence[J]. J Chem Phys, 1998, 108(7): 2 686-2 694. [54] Schmidt-Rohr K, Clauss J, Blümich B, et al. Miscibility of polymer blends investigated by 1H spin diffusion and 13C NMR detection[J]. Magn Reson Chem, 1990, 28(13): S3-S9. [55] Egger N, Schmidt-Rohr K, Blümich B, et al. Solid state NMR investigation of cationic polymerized epoxy resins[J]. J Appl Polym Sci, 1992, 44(2): 289-295. [56] Landfester K, Spiess H W. Characterization of interphases in core-shell latexes by solid-state NMR[J]. Acta Polym, 1998, 49(9): 451-464. [57] Sun P C, Dang Q Q, Li B H, et al. Mobility, miscibility, and microdomain structure in nanostructured thermoset blends of epoxy resin and amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock copolymers characterized by solid-state NMR[J]. Macromolecules, 2005, 38(13): 5 654-5 667. [58] Li X J, Fu W G, Wang Y N, et al. Solid-state NMR characterization of unsaturated polyester thermoset blends containing PEO-PPO-PEO block copolymers[J]. Polymer, 2008, 49(12): 2 886-2 897. [59] Cai W Z, Schmidt-Rohr K, Egger N, et al. A solid-state n.m.r. study of microphase structure and segmental dynamics of poly(styrene-b-methylphenylsiloxane) diblock copolymers[J]. Polymer, 1993, 34(2): 267-276. [60] Saalwachter K. Proton multiple-quantum NMR for the study of chain dynamics and structural constraints in polymeric soft materials[J]. Prog Nucl Magn Reson Spectrosc, 2007, 51(1): 1-35. [61] Baum J, Pines A. NMR studies of clustering in solids[J]. J Am Chem Soc, 1986, 108(24): 7 447-7 454. [62] Schneider M, Gasper L, Demco D E, et al. Residual dipolar couplings by 1H dipolar-encoded longitudinal magnetization, double- and triple-quantum nuclear magnetic resonance in cross-linked elastomers[J}. J Chem Phys, 1999, 111: 402-415. [63] Fechete R, Demco D E, Blümich B. Enhanced sensitivity to residual dipolar couplings of elastomers by higher-order multiple-quantum NMR[J]. J Magn Reson, 2004, 169(1): 19-26. [64] Saalwachter K. 1H multiple-quantum nuclear magnetic resonance investigations of molecular order in polymer networks. II. Intensity decay and restricted slow dynamics[J]. J Chem Phys, 2004, 120(1): 454-464. [65] Saalwchter K, Klüppel M, Luo H, et al. Chain order in filled SBR elastomers: a proton multiple-quantum NMR study[J]. Appl Magn Reson, 2004, 27(3): 401-417. [66] Chasse W, Valentin J L, Genesky G D, et al. Precise dipolar coupling constant distribution analysis in proton multiple-quantum NMR of elastomers[J]. J Chem Phys, 2011, 134(4): 044907. [67] Saalw-chter K, Gottlieb M, Liu, et al. Gelation as studied by proton multiple-quantum NMR[J]. Macromolecules, 2007, 40(5): 1 555-1 561. [68] Saalw-chter K. Detection of heterogeneities in dry and swollen polymer networks by proton low-field NMR spectroscopy[J]. J Am Chem Soc, 2003, 125(48): 14 684-14 685. [69] Vaca C, aacute, vez F, et al. NMR Observation of entangled polymer dynamics: tube model predictions and constraint release[J]. Phys Rev lett, 2010, 104(19): 198305. [70] Wang M, Bertmer M, Demco D E, et al. Indication of heterogeneity in chain-segment order of a PDMS layer grafted onto a silica surface by 1H multiple-quantum NMR[J]. Macromolecules, 2003, 36(12): 4 411-4 413. [71] Li B, Xu L, Wu Q, et al. Various types of hydrogen bonds, their temperature dependence and water-polymer interaction in hydrated poly(acrylic acid) as revealed by H-1 solid-state NMR spectroscopy[J]. Macromolecules, 2007, 40(16): 5 776-5 786. [72] Chevelkov V, Rehbein K, Diehl A, et al. Ultrahigh resolution in proton solid-state NMR spectroscopy at high levels of deuteration[J]. Angew Chem Int Edit, 2006, 45(23): 3 878-3 881. [73] Wang X L, Gu Q, Sun Q, et al. Characterization of polymer compatibility by H-1 dipolar filter solid-state NMR under fast magic angle spinning[J]. Macromolecules, 2007, 40(25): 9 018-9 025. [74] Gu Q, Wang X, Sun P, et al. Tracking the interdiffusion of polymers at a molecular level by 1H dipolar filter solid-state NMR under fast magic angle spinning[J]. Soft Matter, 2011, 7(2): 691-697. [75] Liu Q H, Ma C, Hu B W, et al. Rotor-synchronized dipolar-filter sequence at fast MAS in solid-state NMR[J]. J Magn Reson, 2011, 212(2): 455-459. [76] Brinkmann A, Levitt M H. Symmetry principles in the nuclear magnetic resonance of spinning solids: Heteronuclear recoupling by generalized Hartmann-Hahn sequences[J]. J Chem Phys, 2001, 115: 357-384. [77] Brinkmann A, Edén M. Second order average Hamiltonian theory of symmetry-based pulse schemes in the nuclear magnetic resonance of rotating solids: Application to triple-quantum dipolar recoupling[J]. J Chem Phys, 2004, 120: 11 726-11 745. [78] Campbell G C, VanderHart D L. Optimization of chemical-shift-based polarization gradients in 1H NMR spin-diffusion experiments on polymer blends with chemically similar constituents[J]. J Magn Reson, 1992, 96(1): 69-93. [79] Cho G, Natansohn A. Investigation of phase structure of blends of poly (N-ethylcarbazol-3-yl)methyl methacrylate] and poly{2-[(3,5-Dinitrobenzoyl)oxy ethyl methacrylate} using 1H CRAMPS NMR[J]. Chem Mater, 1997, 9(1): 148-154.[80] VanderHart D L, Prabhu V M, Lin E K. Proton NMR determination of miscibility in a bulk model photoresist system: Poly(4-hydroxystyrene) and the photoacid generator, Di(tert-butylphenyl)Iodonium perfluorooctanesulfonate[J]. Chem Mater, 2004, 16(16): 3 074-3 084. [81] Fu Wei-gui(付维贵). Solid-State NMR Studies on the Microdomain Structure, Interactions and Dynamics of Typical Multiphase Polymer(典型多相聚合物中微相结构,相互作用及动力学的固体NMR研究) ![]() [82] Schmidt-Rohr K, Mao J D. Selective dephasing of OH and NH proton magnetization based on 1H chemical-shift anisotropy recoupling[J]. J Magn Reson, 2002, 157(2): 210-217. [83] Pines A, Gibby M G, Waugh J S. Proton-enhanced NMR of dilute spins in solids[J]. J Chem Phys, 1973, 59(2): 569-590. [84] Christiansen S C, Hedin N, Epping J D, et al. Sensitivity considerations in polarization transfer and filtering using dipole-dipole couplings: Implications for biomineral systems[J]. Solid State Nucl Magn Reson, 2006, 29(1-3): 170-182. [85] Peng W K, Takeda K. Efficient cross polarization with simultaneous adiabatic frequency sweep on the source and target channels[J]. J Magn Reson, 2007, 188(2): 267-274. [86] Weingarth M, Bodenhausen G, Tekely P. Low-power decoupling at high spinning frequencies in high static fields[J]. J Magn Reson, 2009, 199(2): 238-241. [87] Hou G, Ding S, Zhang L, et al. Breaking the T1 constraint for quantitative measurement in magic angle spinning solid-state NMR spectroscopy[J]. J Am Chem Soc, 2010, 132(16): 5 538-5 539. [88] deAzevedo E R, Hu W G, Bonagamba T J, et al. Centerband-only detection of exchange: Efficient analysis of dynamics in solids by NMR[J]. J Am Chem Soc, 1999, 121(36): 8 411-8 412. [89] Lesage A, Bardet M, Emsley L. Through-bond carbon-carbon connectivities in disordered solids by NMR[J]. J Am Chem Soc, 1999, 121(47): 10 987-10 993. [90] deAzevedo E R, Hu W G, Bonagamba T J, et al. Principles of centerband-only detection of exchange in solid-state nuclear magnetic resonance, and extension to four-time centerband-only detection of exchange[J]. J Chem Phys, 2000, 112(20): 8 988-9 001. [91] Lesage A, Charmont P, Steuernagel S, et al. Complete resonance assignment of a natural abundance solid peptide by through-bond heteronuclear correlation solid-state NMR[J]. J Am Chem Soc, 2000, 122(40): 9 739-9 744. [92] Krushelnitsky A, deAzevedo E, Linser R, et al. Direct observation of millisecond to second motions in proteins by dipolar CODEX NMR spectroscopy[J]. J Am Chem Soc, 2009, 131(34): 12 097-12 099. [93] Bennett A E, Rienstra C M, Auger M, et al. Heteronuclear decoupling in rotating solids[J]. J Chem Phys, 1995, 103(16): 6 951-6 958. [94] Gan Z, Ernst R R. Frequency- and phasemodulated heteronuclear decoupling in rotating solids[J]. Solid State Nucl Magn Reson, 1997, 8(3): 153-159. [95] Takegoshi K, Mizokami J, Terao T. 1H decoupling with third averaging in solid NMR[J]. Chem Phys Lett, 2001, 341(5-6): 540-544. [96] Fung B M, Khitrin A K, Ermolaev K. An improved broadband decoupling sequence for liquid crystals and solids[J]. J Magn Reson, 2000, 142(1): 97-101. [97] Detken A, Hardy E H, Ernst M, et al. Simple and efficient decoupling in magic-angle spinning solid-state NMR: the XiX scheme[J]. Chem Phys Lett, 2002, 356(3-4): 298-304. [98] De Pa-pe G, Sakellariou D, Hodgkinson P, et al. Heteronuclear decoupling in NMR of liquid crystals using continuous phase modulation[J]. Chem Phys Lett, 2003, 368(5-6): 511-522. [99] De Pa-pe G, Hodgkinson P, Emsley L. Improved heteronuclear decoupling schemes for solid-state magic angle spinning NMR by direct spectral optimization[J]. Chem Phys Lett, 2003, 376(3-4): 259-267. [100] Chandran C V, Br-uniger T. Efficient heteronuclear dipolar decoupling in solid-state NMR using frequency-swept SPINAL sequences[J]. J Magn Reson, 2009, 200(2): 226-232. [101] Thakur R S, Kurur N D, Madhu P K. Swept-frequency two-pulse phase modulation for heteronuclear dipolar decoupling in solid-state NMR[J]. Chem Phys Lett, 2006, 426(4-6): 459-463. [102] Vinod Chandran C, Madhu P K, Kurur N D, et al. Swept-frequency two-pulse phase modulation (SWf-TPPM) sequences with linear sweep profile for heteronuclear decoupling in solid-state NMR ![]() [103] Weingarth M, Tekely P, Bodenhausen G. Efficient heteronuclear decoupling by quenching rotary resonance in solid-state NMR[J]. Chem Phys Lett, 2008, 466(4-6): 247-251. [104] Paul S, Mithu V S, Kurur N D, et al. Efficient heteronuclear dipolar decoupling in solid-state nuclear magnetic resonance at rotary resonance conditions[J]. J Magn Reson, 2010, 203(1): 199-202. [105] Paul S, Kurur N D, Madhu P K. On the choice of heteronuclear dipolar decoupling scheme in solid-state NMR[J]. J Magn Reson, 2010, 207(1): 140-148. [106] Zhang S, Wu X, Zhang H, et al. Quantitative measurement of rare spins in solid state cross polarization NMR[J]. Chem Phys Lett, 1990, 165(6): 465-468. [107] Fu R, Hu J, Cross T A. Towards quantitative measurements in solid-state CPMAS NMR: A Lee-Goldburg frequency modulated crosspolarization scheme[J]. J Magn Reson, 2004, 168(1): 8-17. [108] Shu J, Chen Q, Zhang S. Quantification of cross polarization with relaxation compensated reciprocity relation in NMR[J]. Chem Phys Lett, 2008, 462(1-3): 125-128. [109] Shu J, Li P, Chen Q, et al. Quantitative measurement of polymer compositions by NMR spectroscopy: Targeting polymers with marked difference in phase mobility[J]. Macromolecules, 2010, 43(21): 8 993-8 996. [110] Takegoshi K, Nakamura S, Terao T. 13C-13C polarization transfer by resonant interference recoupling under magic-angle spinning in solid-state NMR[J]. Chem Phys Lett, 1999, 307(5-6): 295-302. [111] Takegoshi K, Nakamura S, Terao T. 13C-1H dipolar-assisted rotational resonance in magic-angle spinning NMR[J]. Chem Phys Lett, 2001, 344(5-6): 631-637. [112] Takegoshi K, Nakamura S, Terao T. 13C-1H dipolar-driven 13C-13C recoupling without 13C rf irradiation in nuclear magnetic resonance of rotating solids[J]. J Chem Phys, 2003, 118(5): 2 325-2 341. [113] Schmidt-Rohr K, Clauss J, Spiess H W. Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy ![]() [114] Tekely P, Palmas P, Mutzenhardt P. Elimination of heteronuclear dipolar interactions from carbon-13-detected proton spectra in wideline-separation nuclear magnetic resonance spectroscopy[J]. Macromolecules, 1993, 26(26): 7 363-7 365. [115] van Rossum B J, de Groot, Ladizhansky C P, et al. A method for measuring heteronuclear (1H-13C) distances in high speed MAS NMR[J]. J Am Chem Soc, 2000, 122(14): 3 465-3 472. [116] Hong M, Yao X, Jakes K, et al. Investigation of molecular motions by lee-goldburg cross-polarization NMR spectroscopy[J]. J Phys Chem B, 2002, 106(29): 7 355-7 364. [117] Hartmann S R, Hahn E L. Nuclear double resonance in the rotating frame[J]. Phys Rev, 1962, 128(5): 2042. [118] Qiu X, Mirau P A. WIM/WISE NMR studies of chain dynamics in solid polymers and blends[J]. J Magn Reson, 2000, 142(1): 183-189. [119] Hediger S, Lesage A, Emsley L. A new NMR method for the study of local mobility in solids and application to hydration of biopolymers in plant cell walls[J]. Macromolecules, 2002, 35(13): 5 078-5 084. [120] Mulder F M, Jansen B J P, Lemstra P J, et al. Pronounced poly(methyl methacrylate) dynamics induced by blending morphology[J]. Macromolecules, 2000, 33(2): 457-460. [121] Ohgo K, Niemczura W P, Muroi T, et al. Wideline separation (WISE) NMR of native elastin[J]. Macromolecules, 2009, 42(22): 8 899-8 906. [122] Caravatti P, Bodenhausen G, Ernst R R. Heteronuclear solid-state correlation spectroscopy[J]. Chem Phys Lett, 1982, 89(5): 363-367. [123] Caravatti P, Braunschweiler L,Ernst R R. Heteronuclear correlation spectroscopy in rotating solids[J]. Chem Phys Lett, 1983, 100(4): 305-310. [124] Bielecki A, Burum D P, Rice D M, et al. Solid-state two-dimensional carbon-13-proton correlation (HETCOR) NMR spectrum of amorphous poly(2,6-dimethyl-p-phenylene oxide) (PPO)[J]. Macromolecules, 1991, 24(17): 4 820-4 822. [125] Jia X, Wolak J, Wang X, et al. Independent calibration of 1H spin-diffusion coefficients in amorphous polymers by intramolecular polarization transfer[J]. Macromolecules, 2003, 36(3): 712-718. [126] Hou S S, Beyer F L, Schmidt-Rohr K. Highsensitivity multinuclear NMR spectroscopy of a smectite clay and of clay-intercalated polymer[J]. Solid State Nucl Magn Reson, 2002, 22(2-3): 110-127. [127] Jia X, Wang X, Tonelli A E, et al. Two-dimensional spin-diffusion NMR reveals differential mixing in biodegradable polymer blends[J]. Macromolecules, 2005, 38(7): 2 775-2 780. [128] Lesage A, Sakellariou D, Steuernagel S, et al. Carbon-proton chemical shift correlation in solid-state NMR by through-bond multiplequantum spectroscopy[J]. J Am Chem Soc, 1998, 120(50): 13 194-13 201. [129] Lesage A, Emsley L. Through-bond heteronuclear single-quantum correlation spectroscopy in solid-state NMR, and comparison to other through-bond and through-space experiments[J]. J Magn Reson, 2001, 148(2): 449-454. [130] Lesage A, Auger C, Caldarelli S, et al. Determination of through-bond carbon-carbon connectivities in solid-state NMR using the INADEQUATE experiment[J]. J Am Chem Soc, 1997, 119(33): 7 867-7 868. [131] Wu C H, Ramamoorthy A, Opella S J. High-resolution heteronuclear dipolar solid-state NMR spectroscopy[J]. J Magn Reson Ser A, 1994, 109(2): 270-272. [132] Hester R K, Ackerman J L, Neff B L, et al. Separated local field spectra in NMR: Determination of structure of solids[J]. Phys Rev lett, 1976, 36(18): 1 081-1 083. [133] A. Ramamoorthy Y W, Dong-Kuk Lee. PISEMA solid-state NMR spectroscopy[J]. Annu Rep NMR Spectrosc, 2004, 52: 1-52. [134] Olve B, Peersen X W, Irina Kustanovich, et al. Variable -amplitude cross-polarization MAS NMR[J]. J Magn Reson A, 1993, 104(3): 334-339. [135] Lee M, Goldburg W I. Nuclear-magnetic-resonance line narrowing by a rotating rf field[J]. Phys Rev, 1965, 140(4A): A1261-A1271. [136] Yamamoto K, Lee D K, Ramamoorthy A. Broadband-PISEMA solid-state NMR spectroscopy[J]. Chem Phys Lett, 2005, 407(4-6): 289-293. [137] Lee D K, Narasimhaswamy T, Ramamoorthy A. PITANSEMA, a low-power PISEMA solid-state NMR experiment[J]. Chem Phys Lett, 2004, 399(4-6): 359-362. [138] Nevzorov A A, Opella S J. A “Magic Sandwich” pulse sequence with reduced offset dependence for high-resolution separated local field spectroscopy[J]. J Magn Reson, 2003, 164(1): 182-186. [139] Nevzorov A A, Opella S J. Selective averaging for high-resolution solid-state NMR spectroscopy of aligned samples[J]. J Magn Reson, 2007, 185(1): 59-70. [140] Ramamoorthy A, Opella S J. Two-dimensional chemical shift/heteronuclear dipolar coupling spectra obtained with polarization inversion spin exchange at the magic angle and magic-angle sample spinning (PISEMAMAS)[J]. Solid State Nucl Magn Reson, 1995, 4(6): 387-392. [141] Dvinskikh S V, Zimmermann H, Maliniak A, et al. Heteronuclear dipolar recoupling in liquid crystals and solids by PISEMA-type pulse sequences[J]. J Magn Reson, 2003, 164(1): 165-170. [142] Dvinskikh S V, Sandstr-m D. Frequency offset refocused PISEMA-type sequences[J]. J Magn Reson, 2005, 175(1): 163-169. [143] Zhang R C, He X, Fu W G, et al. Efficient identification of different types of carbons in organic solids by 2D solid-state NMR spectroscopy[J]. J Phys Chem A, 2011, 115(42): 11 665-11 670. [144] Hartzell C J, Whitfield M, Oas T, et al. Determination of the nitrogen-15 and carbon-13 chemical shift tensors of L-[13C]alanyl-L-[15N]alanine from the dipole-coupled powder patterns[J]. J Am Chem Soc, 1987, 109(20): 5 966-5 969. [145] de Dios A C, Oldfield E. Evaluating 19F chemical shielding in fluorobenzenes: Implications for chemical shifts in proteins[J]. J Am Chem Soc, 1994, 116(16): 7 453-7 454. [146] Heller J, Laws D D, Tomaselli M, et al. Determination of dihedral angles in peptides through experimental and theoretical studies of αCarbon chemical shielding tensors[J]. J Am Chem Soc, 1997, 119(33): 7 827-7 831. [147] Hu J Z, Solum M S, Taylor C M V, et al. Structural determination in carbonaceous solids using advanced solid state NMR techniques ![]() [148] Duncan T. A compilation of chemical shift anisotropies[M]. Chicago: Farragut Press edition, 1990. [149] Herzfeld J, Berger A E. Sideband intensities in NMR spectra of samples spinning at the magic angle[J]. J Chem Phys, 1980, 73: 6 021-6 030. [150] Liu S F, Mao J D, Schmidt-Rohr K. A robust technique for two-dimensional separation of undistorted chemical-shift anisotropy powder patterns in magic-angle-spinning NMR[J]. J Magn Reson, 2002, 155(1): 15-28. [151] Tycko R, Dabbagh G, Mirau P A. Determination of chemical-shift-anisotropy Lineshapes in a two-dimensional magic-angle-spinning NMR experiment[J]. J Magn Reson, 1989, 85(2): 265-274. [152] Bax A, Szeverenyi N M, Maciel G E. Chemical shift anisotropy in powdered solids studied by 2D FT NMR with flipping of the spinning axis[J]. J Magn Reson, 1983, 55(3): 494-497. [153] Bax A, Szeverenyi N M, Maciel G E. Chemical shift anisotropy in powdered solids studied by 2D FT CP/MAS NMR[J]. J Magn Reson, 1983, 51(3): 400-408. [154] Terao T, Fujii T, Onodera T, et al. Switching-angle sample-spinning NMR spectroscopy for obtaining powder-pattern-resolved 2D spectra: Measurements of 13C chemical-shift anisotropies in powdered 3,4-dimethoxybenzaldehyde[J]. Chem Phys Lett, 1984, 107(2): 145-148. [155] Ishii Y, Terao T. Manipulation of nuclear spin Hamiltonians by rf-field modulations and its applications to observation of powder patterns under magic-angle spinning ![]() [156] Hong M, Yao X. Homonuclear decoupled 13C chemical shift anisotropy in 13C doubly labeled peptides by selective-pulse solid-state NMR[J]. J Magn Reson, 2003, 160(2): 114-119. [157] Xu Lu(徐璐), Li Bao-hui(李宝会), Sun Ping-chuan(孙平川). Chemical shift anisotropy of polypropylenes: Theoretical calculation and experimental results from solid-state NMR experiments(高分子化学位移的量化计算与固体NMR实验研究)[J]. Chinese J Magn Reson(波谱学杂志), 2010, 27(4): 597-608. [158] Yang Y, Schuster M, Blümich B, et al. Dynamic magic-angle spinning nmr spectroscopy: Exchange-induced sidebands[J]. Chem Phys Lett, 1987, 139(3-4): 239-243. [159] Yang Y, Hagemeyer A, Blümich B, et al. 2D magic angle spinning NMR spectroscopy: Correlation between molecular order and dynamics[J]. Chem Phys Lett, 1988, 150(1-2): 1-5. [160] Yang Y, Hagemeyer A, Spiess H W. An order-exchange-correlated two-dimensional NMR study of slow molecular motion in highly oriented crystalline poly(oxymethylene)[J]. Macromolecules, 1989, 22(2): 1 004-1 006. [161] deAzevedo E R, Bonagamba T J, Reichert D. Molecular dynamics in solid polymers[J]. Prog Nucl Magn Reson Spectrosc, 2005, 47(3-4): 137-164. [162] Pascui O, Beiner M, Reichert D. Identification of slow dynamic processes in poly(n-hexyl Methacrylate) by solid-state 1D-MAS exchange NMR[J]. Macromolecules, 2003, 36(11): 3 992-4 003. [163] deAzevedo E R, Bonagamba T J, Schmidt-Rohr K. Pure-exchange solid-state NMR[J]. J Magn Reson, 2000, 142(1): 86-96. [164] deAzevedo E R, Tozoni J R, Schmidt-Rohr K, et al. Analysis of one-dimensional pure-exchange NMR experiments for studying dynamics with broad distributions of correlation times[J]. J Chem Phys, 2005, 122: 154506. [165] Gérardy-Montouillout V, Malveau C, Tekely P, et al. ODESSA, a New 1D NMR exchange experiment for chemically equivalent nuclei in rotating solids[J]. J Magn Reson Ser A, 1996, 123(1): 7-15. [166] Reichert D, Zimmermann H, Tekely P, et al. Time-reverse ODESSA. A 1D exchange experiment for rotating solids with several groups of equivalent nuclei[J]. J Magn Reson, 1997, 125(2): 245-258. [167] Luz Z, Tekely P, Reichert D. Slow exchange involving equivalent sites in solids by one-dimensional MAS NMR techniques[J]. Prog Nucl Magn Reson Spectrosc, 2002, 41(1-2): 83-113. [168] Wolak J E, White J L. Factors That Allow Polyolefins To Form Miscible Blends: Polyisobutylene and Head-to-Head Polypropylene[J]. Macromolecules, 2005, 38(25): 10 466-10 471. [169] Wachowicz M, Gill L, Wolak J, et al. Print-polypropylene and polyethylene-copolymer blend miscibility: slow chain dynamics in individual blend components near the glass transition[J]. Macromolecules, 2008, 41(8): 2 832-2 838. [170] Wachowicz M, Gill L, White J L. Polyolefin blend miscibility: Polarization transfer versus direct excitation exchange NMR[J]. Macromolecules, 2008, 42(2): 553-555. [171] Saalwachter K, Schmidt-Rohr K. Relaxation-induced dipolar exchange with recoupling-An MAS NMR method for determining heteronuclear distances without irradiating the second spin[J]. J Magn Reson, 2000, 145(2): 161-172. |
[1] | 胡坤, 孙汉董, 普诺·白玛丹增. 量子化学计算核磁共振参数在天然产物结构鉴定中的应用[J]. 波谱学杂志, 2019, 36(3): 359-376. |
[2] | 王亚兰, 王晓静, 王志伟. 阿齐沙坦的波谱学数据及结构确证[J]. 波谱学杂志, 2019, 36(3): 350-358. |
[3] | 万至彬, 宋建会, 郭鸣明. 原位液体核磁共振在高分子材料表征领域的应用[J]. 波谱学杂志, 2019, 36(3): 408-424. |
[4] | 汤衡, Gilbert NSHOGOZA, 刘明清, 刘亚茜, 阮科, 马荣声, 高佳. 基于片段的核磁共振筛选方法识别NSD1 SET结构域的全新苗头化合物[J]. 波谱学杂志, 2019, 36(2): 148-154. |
[5] | 吴金泽, 辛家祥, 付晓彬, 姚叶锋. 通过宽线固体核磁共振氢谱研究半晶高分子的相结构[J]. 波谱学杂志, 2019, 36(1): 23-33. |
[6] | 尹田鹏, 汪泽, 陈阳, 邵娅婷, 邓亮, 黎唯. 10-吲哚细胞松弛素chaetoglobosin F的NMR解析[J]. 波谱学杂志, 2019, 36(1): 74-82. |
[7] | 刘焯, 欧阳传湘, 王长权, 韩登林, 吴琼, 高兴. 基于T2截止值的幂函数构建毛管压力曲线[J]. 波谱学杂志, 2019, 36(1): 45-54. |
[8] | 迟秀娟, 乔晓亚, 刘颖, 刘惠丽, 陈雷, 王际辉, 艾选军. 拟南芥AtGrp7 RRM结构域的纯化及其结构与结合的初步分析(英文)[J]. 波谱学杂志, 2019, 36(1): 1-14. |
[9] | 尹田鹏, 罗智慧, 蔡乐, 丁中涛. 天然C19-二萜生物碱的研究进展及其核磁共振波谱特征[J]. 波谱学杂志, 2019, 36(1): 113-126. |
[10] | 张明光, 冯小虎, 于水涛, 吉小龙, 陈再新. 盐酸贝西沙星的波谱学数据与结构确证[J]. 波谱学杂志, 2018, 35(3): 374-384. |
[11] | 林云良, 高红梅, 李锋, 陈相峰. 卢立康唑的波谱学特征和结构确证[J]. 波谱学杂志, 2018, 35(3): 385-392. |
[12] | 姜丹, 王巍, 毕倩楠, 苏丹丹. 一种1,4-噻嗪酰胺类FKBPs配体的波谱学数据解析[J]. 波谱学杂志, 2018, 35(2): 204-214. |
[13] | 马芸, 郭虹, 王秋实, 张伟国, 吴昊. 基于影像的形态学特征与胶质母细胞瘤特征分子表达的相关性研究[J]. 波谱学杂志, 2018, 35(1): 22-30. |
[14] | 吉小龙, 于水涛, 陈再新. 依卡倍特钠的波谱学数据解析[J]. 波谱学杂志, 2018, 35(1): 109-118. |
[15] | 王丹, 刘乙祥, 寇新慧, 刘买利, 姜凌. 细菌反应调节蛋白RR468磷酸化和去磷酸化关键位点的NMR研究[J]. 波谱学杂志, 2017, 34(4): 397-407. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1509
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 2316
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||