[1] Brambilla P, Perez J, Barale F, et al. GABAergic dysfunction in mood disorders[J]. Mol Psychiatr, 2003, 8(8): 721-737.
[2] Lewis D A, Hashimoto T, Volk D W. Cortical inhibitory neurons and schizophrenia[J]. Nat Rev Neurosci, 2005, 6(4): 312-324.
[3] Fukuyama H, Ogawa M, Yamauchi H, et al. Altered cerebral energy metabolism in alzheimer's disease: A PET study[J]. J Nucl Med, 1994, 35(1): 1-6.
[4] Holthoff V A, Beuthien-Baumann B, Kalbe E, et al. Regional cerebral metabolism in early Alzheimer's disease with clinically significant apathy or depression[J]. Biol Psychiatr, 2005, 57(4): 412-421.
[5] Ishii K, Sasaki M, Kitagaki H, et al. Reduction of cerebellar glucose metabolism in advanced alzheimer's disease[J]. J Nucl Med, 1997, 38(6): 925-928.
[6] Yamaguchi S, Meguro K, Itoh M, et al. Decreased cortical glucose metabolism correlates with hippocampal atrophy in Alzheimer's disease as shown by MRI and PET[J]. J Neurol Neurosurg Psychiatr, 1997, 62(6): 596-600.
[7] de Graaf R A, Mason G F, Patel A B, et al. In vivo 1H-[13C]-NMR spectroscopy of cerebral metabolism[J]. NMR Biomed, 2003, 16(6/7): 339-357.
[8] Sokoloff L, Reivich M, Kennedy C, et al. The [14C] Deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat[J]. J Neurochem, 1977, 28(5): 897-916.
[9] Jack C R, Jr Shiung M M, Gunter J L, et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD[J]. Neurology, 2004, 62(4): 591-600.
[10] Shulman R G. Functional imaging studies: Linking mind and basic neuroscience[J]. Am J Psychiatry, 2001, 158(1): 1120.
[11] Cohen S M, Rognstad R, Shulman R G, et al. A comparison of 13C nuclear magnetic resonance and 14C tracer studies of hepatic metabolism[J]. J Biol Chem, 1981, 256(7): 3428-3432.
[12] Rothman D L, Behar K L, Hetherington H P, et al. 1H-Observe/13C-decouple spectroscopic measurements of lactate and glutamate in the rat brain in vivo[J]. Proc Nati Acad Sci USA, 1985, 82(6): 1 633-1 637.
[13] Magistretti P J, Pellerin L, Rothman D L, et al. NEUROSCIENCE: Energy on Demand[J]. Science, 1999, 283(5401): 496497.
[14] Mason G F, Rothman D L. Basic principles of metabolic modeling of NMR 13C isotopic turnover to determine rates of brain metabolism in vivo[J]. Metab Eng, 2004, 6(1): 75-84.
[15] Gruetter R, Novotny E J, Boulware S D, et al. Localized C-13 NMR-Spectroscopy in the human brain of aminoacid labeling from D[1-13C] Glucose[J]. J Neurochem, 1994, 63(4): 1 377-1 385.
[16] Gruetter R, Novotny E J, Boulware, S D, et al. Direct measurement of brain glucose-concentrations in humans by C-13 NMR-spectroscopy[J]. Proc Natl Acad Sci USA, 1992, 89(24): 12 208-12 208.
[17] Mason G F, Falk Petersen K, de Graaf R A, et al. A comparison of 13C NMR measurements of the rates of glutamine synthesis and the tricarboxylic acid cycle during oral and intravenous administration of [1-13C] glucose [J]. Brain Res Protoc, 2003, 10(3): 181-190.
[18] London E D, Cascella N G, Wong D F, et al. Cocaine-induced redoppuction of glucose utilization in human brain: A study using positron emission tomography and [Fluorine 18]-fluorodeoxyglucose[J]. Arch Gen Psychiatry, 1990, 47(6): 567-574.
[19] London E D, Connolly R J, Szikszay M, et al. Effects of nicotine on local cerebral glucose-utilization in the rat[J]. J Neurosci, 1988, 8(10): 3 920-3 928.
[20] Marenco T, Bernstein S, Cumming P, et al. Effects of nicotine and chlorisondamine on cerebral glucose utilization in immobilized and freely-moving rats[J]. Br J Pharmacol, 2000, 129(1): 147-155.
[21] Jiang L, Herzog R I, Mason G F, et al. Recurrent antecedent hypoglycemia alters neuronal oxidative metabolism in vivo[J]. Diabetes, 2009, 58(6): 1 266-1 274.
[22] Patel A B, Chowdhury G M I, de Graaf R A, et al. Cerebral pyruvate carboxylase flux is unaltered during bicuculline-seizures[J]. J Neurosci Res, 2005, 79(1/2): 128-138.
[23] de Graaf R A, Patel A B, de Graaf R A, et al. Acute regulation of steady-state GABA levels following GABAtransaminase inhibition in rat cerebral cortex[J]. Neurochem Int, 2006, 48(6/7): 508-514.
[24] Bhattacharya P, Harris K, Lin A, et al. Ultra-fast three dimensional imaging of hyperpolarized 13C in vivo[J]. Magma Magn Reson Mater Phys Biol Med, 2005, 18(5): 245-256.
[25] Wang J, Jiang L, Jiang Y, et al. Regional metabolite levels and turnover in the awake rat brain under the influence of nicotine[J]. J Neuochem, 2010, 113(6): 1 447-1 458.
[26]〖KG*2〗de Graaf R A. In Vivo NMR Spectroscopy, 2nd Edition: Principles and Techniques[M]. John Wiley & Sons, Ltd, 2007.
[27] Erdö S L. Postmortem increase of GABA levels in peripheral rat tissues: Prevention by 3-mercapto-propionic acid[J]. J Neural Transm, 1984, 60(3): 303-314.
[28] Alderman J L, Shellenberger M K. γ-Aminobutyric acid (GABA) in the rat brain: re-evaluation of sampling procedures and the post-mortem increase[J]. J Neurochem, 1974, 22(6): 937-940.
[29] Lovell R A, Elliott S J, Elliott K A C. The α-aminobutyric acid and factor I content of brain[J]. J Neurochem, 1963, 10(7): 479-488.
[30] Minard F N, Mushahwar I K. Synthesis of [gamma]-aminobutyric acid from a pool of glutamic acid in brain after decapitation[J]. Life Sci, 1966, 5(15): 1 409-1 413.
[31] Higuchi T, Fernandez E J, Maudsley A A, et al. Mapping of cerebral metabolites in rats by 1H magnetic resonance spectroscopic imaging. Distribution of metabolites in normal brain and postmortem changes[J]. NMR Biomed, 1993, 6(5): 311-317.
[32] Petroff O A C, Ogino T, Alger J R. High-resolution proton magnetic resonance spectroscopy of rabbit brain: Regional metabolite levels and postmortem changes[J]. J Neurochem, 1988, 51(1): 163-171.
[33] Merritt J H, Frazer J W. Microwave fixation of brain-tissue as a neurochemical technique - review[J]. J Microw Power Electromagn Energy, 1977, 12(2): 133-139.
[34] de Graaf R A, Chowdhury G M I, Brown P B, et al. In situ 3D magnetic resonance metabolic imaging of microwave-irradiated rodent brain: a new tool for metabolomics research[J]. J Neurochem, 2009, 109(2): 494-501.
[35] de Graaf R A, Brown P B, Mason G F, et al. Detection of [1, 6-13C-2]-glucose metabolism in rat brain by in vivo 1H-[13C]-NMR spectroscopy[J]. Magn Reson Med, 2003, 49(1): 37-46.
[36] de Graaf R A, Mason G F, Patel A B, et al. Regional glucose metabolism and glutamatergic neurotransmission in rat brain in vivo[J]. Proc Nati Cad Sci USA, 2004, 101(34): 12 700-12 705.
[37] Mason G F, Petersen K F, de Graaf R A, et al. Measurements of the anaplerotic rate in the human cerebral cortex using 13C magnetic resonance spectroscopy and [1-13C] and [2-13C] glucose[J]. J Neurochem, 2007, 100(1): 73-86.
[38] Patel A B, de Graaf R A, Mason G F, et al. Glutamatergic neurotransmission and neuronal glucose oxidation are coupled during intense neuronal activation[J]. J Cereb Blood Flow Metab, 2004, 24(9): 972-985.
[39] Patel A B, de Graaf R A, Mason G F, et al. The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo[J]. Proc Natl Acad Sci USA, 2005, 102(15): 5 588-5 593.
[40] Sibson N R, Mason G F, Shen J, et al. In vivo 13C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during[2-13C]glucose infusion[J]. J Neurochem, 2001, 76(4): 975-989.
[41] Waniewski R A, Martin D L. Preferential utilization of acetate by astrocytes is attributable to transport[J]. J Neurosci, 1998, 18(14): 5 225-5 233.
[42] Lebon V, Petersen K F, Cline G W, et al. Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: Elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism[J]. J Neurosci, 2002, 22(5): 1 523-1 531.
[43] Shen J, Rothman D L, Behar K L, et al. Determination of the glutamate-glutamine cycling flux using twocompartment dynamic metabolic modeling is sensitive to astroglial dilution[J]. J Cereb Blood Flow Metab, 2009, 29(1): 108-118.
[44] Blüml S, Moreno-Torres A, Shic F, et al. Tricarboxylic acid cycle of glia in the in vivo human brain[J]. NMR Biomed, 2002, 15(1): 1-5.
[45] Shen J, Petersen K F, Behar K L, et al. Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR[J]. Proc Nati Cad Sci USA, 1999, 96(14): 8 235-8 240.
[46] Gruetter R, Seaquist E R, Ugurbil K. A mathematical model of compartmentalized neurotransmitter metabolism in the human brain[J]. Am J Physiol Endocrinol Metab, 2001, 281(1): E100-E112.
[47] Pan J W, de Graaf R A, Petersen K F, et al. [2, 4-13C2]-β-Hydroxybutyrate metabolism in human brain[J]. J Cereb Blood Flow Metab, 2002, 22(7): 890-898.
[48] Jr E J N, Ogino T, Rothman D L, et al. Direct carbon versus proton heteronuclear editing of 2-13C ethanol in rabbit brain in vivo: A sensitivity comparison[J]. Magn Reson Med, 1990, 16(3): 431-443.
[49] Brindle K M, Boyd J, Campbell I D, et al. Observation of carbon labelling in cell metabolites using proton spin echo NMR[J]. Biochem Biophys Res Commun, 1982, 109(3): 864-871.
[50] Sillerud L O, Alger J R, Shulman R G. High-resolution proton NMR studies of intracellular metabolites in yeast using 13C decoupling[J]. J Magn Reson, 1981, 45(1): 142-150.
[51] Foxall D L, Cohen J S, Tschudin R G. Selective observation of 13C-enriched metabolites by 1H NMR[J]. J Magn Reson, 1983, 51(2): 330-334.
[52] Ogino T, Arata Y, Fujiwara S. Proton correlation nuclear magnetic resonance study of metabolic regulations and pyruvate transport in anaerobic Escherichia coli cells[J]. Biochem, 1980, 19(16): 3 684-3 691.
[53] Provencher S W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra[J]. Magn Reson Med, 1993, 30(6): 672-679.
[54] de Graaf A A, Bovée W M M J. Improved quantification of in vivo 1H NMR spectra by optimization of signal acquisition and processing and by incorporation of prior knowledge into the spectral fitting[J]. Mag Reson Med, 1990, 15(2): 305-319.
[55] Eijsden P v, Behar K L, Mason G F, et al. In vivo neurochemical profiling of rat brain by [1H-13C] NMR spectroscopy: cerebral energetics and glutamatergic/GABAergic neurotransmission[J]. J Neurochem, 2010, 112(1): 24-33.
[56] Mason G F, CWave: Software for the Design and Analysis of 13C Labeling Studies Performed In Vivo[C]. ISMRM. Denver, CO. 2000, 1870.
[57] Alcolea A, Carrera J, Medina A. A hybrid Marquardt-Simulated Annealing method for solving the groundwater inverse problem[J]. Calibrat Reliab Groundwater Model, 2000, 265: 157-163.
[58] Rothman D L, Petroff O A, Behar K L, et al. Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo[J]. Proc Nati Cad Sci USA, 1993, 90(12): 5 662-5 666.
[59] Petroff O A C, Behar K L, Mattson R H, et al. Human brain γaminobutyric acid levels and seizure control following initiation of vigabatrin therapy[J]. J Neurochem, 1996, 67(6): 2 399-2 404.
[60] Sanacora G, Mason G F, Rothman D L, et al. Reduced cortical γ-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy[J]. Arch Gen Psychiatry, 1999, 56(11): 1 043-1 047.
[61] Behar K L, Rothman D L, Petersen K F, et al. Preliminary evidence of low cortical GABA levels in localized 1HMR spectra of alcohol-dependent and hepatic encephalopathy patients[J]. Am J Psychiatry, 1999, 156(6): 952-954.
[62] Sibson N R, Dhankhar A, Mason G F, et al. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity[J]. Proc Nati Cad Sci USA, 1998, 95(1): 316-321.
[63] Patel A B, Graaf R A d, Mason G F, et al. Coupling of glutamatergic neurotransmission and neuronal glucose oxidation over the entire range of cerebral cortex activity[J]. Ann N Y Acad Sci, 2003, 1003: 452-453. |