[1] Fadeev E A, Sam M D, Clubb R T. NMR structure of the amino-terminal domain of the lambda integrase protein in complex with DNA: immobilization of a flexible tail facilitates beta-sheet recognition of the major groove[J]. J Mol Biol, 2009, 388(4): 682-690.
[2] Christen B, Hornemann S, Damberger F F, et al. Prion protein NMR structure from tammar wallaby (Macropus eugenii) shows that the beta2-alpha2 loop is modulated by long-range sequence effects[J]. J Mol Biol, 2009, 389(5): 833-845.
[3] Pellecchia M, Sem D S, Wuthrich K. NMR in drug discovery[J]. Nat Rev Drug Discov, 2002, 1(3): 211-219.
[4] Pellecchia M, Bertini I, Cowburn D, et al. Perspectives on NMR in drug discovery: a technique comes of age
[J]. Nat Rev Drug Discov, 2008, 7(9): 738-745.
[5] Sun H, Tang Y, Xiang J, et al. Spectroscopic studies of the interaction between quercetin and G-quadruplex DNA
[J]. Bioorg Med Chem Lett, 2006, 16(13): 3 586-3 589.
[6] Sun H, Xiang J, Tang Y, et al. Regulation and recognization of the extended G-quadruplex by rutin[J]. Biochem Biophys Res Commun, 2007, 352(4): 942-946.
[7] Li Q, Xiang J, Li X, et al. Stabilizing parallel G-quadruplex DNA by a new class of ligands: Two non-planar alkaloids through interaction in lateral grooves[J]. Biochimie, 2009, 91(7): 811-819.
[8] Yang Q, Xiang J, Yang S, et al. Verification of specific G-quadruplex structure by using a novel cyanine dye supramolecular assembly: Ⅱ. The binding characterization with specific intramolecular G-quadruplex and the recognizing mechanism[J]. Nucleic Acids Res, 2009, doi:10.1093/nar/gkp1045.
[9] Weidauer S E, Schmieder P, Beerbaum M, et al. NMR structure of the Wnt modulator protein Sclerostin[J]. Biochem Biophys Res Commun, 2009, 380(1): 160-165.
[10] Laurents D V, Bruix M, Jimenez M A, et al. The 1H, 13C, 15N resonance assignment, solution structure, and residue level stability of eosinophil cationic protein/RNase 3 determined by NMR spectroscopy[J]. Biopolymers, 2009, 91(12): 1 018-1 028.
[11] Eletsky A, Sukumaran D K, Xiao R, et al. NMR structure of protein YvyC from Bacillus subtilis reveals unexpected structural similarity between two PFAM families[J]. Proteins, 2009, 76(4): 1 037-1 041.
[12] Nanga R P, Brender J R, Xu J, et al. Three-dimensional structure and orientation of rat islet amyloid polypeptide protein in a membrane environment by solution NMR spectroscopy[J]. J Am Chem Soc, 2009, 131(23): 8 252-8 261.
[13] Macek P, Chmelik J, Krizova I, et al. NMR structure of the N-terminal domain of capsid protein from the mason-pfizer monkey virus[J]. J Mol Biol, 2009, 392(1): 100-114.
[14] Ryabov Y, Suh J Y, Grishaev A, et al. Using the experimentally determined components of the overall rotational diffusion tensor to restrain molecular shape and size in NMR structure determination of globular proteins and protein-protein complexes[J]. J Am Chem Soc, 2009, 131(27): 9 522-9 531.
[15] Theisgen S, Scheidt H A, Magalhaes A, et al. A solid-state NMR study of the structure and dynamics of the myristoylated N-terminus of the guanylate cyclase-activating protein-2[J]. Biochim Biophys Acta, 2010, 1798(2): 266-274.
[16] Saio T, Yokochi M, Inagaki F. The NMR structure of the p62 PB1 domain, a key protein in autophagy and NFkappaB signaling pathway[J]. J Biomol NMR, 2009, 45(3): 335-341.
[17] Wang Y, Patel D J. Solution structure of a parallel-stranded G-quadruplex DNA[J]. J Mol Biol, 1993, 234(4): 1 171-1 183.
[18] Kettani A, Bouaziz S, Wang W, et al. Bombyx mori single repeat telomeric DNA sequence forms a G-quadruplex capped by base triads[J]. Nat Struct Biol, 1997, 4(5): 382-389.
[19] Zhang N, Phan A T, Patel D J. (3 + 1) Assembly of three human telomeric repeats into an asymmetric dimeric G-quadruplex[J]. J Am Chem Soc, 2005, 127(49): 17 277-17 285.
[20] Phan A T, Kuryavyi V, Gaw H Y, et al. Smallmolecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter[J]. Nat Chem Biol, 2005, 1(3): 167-173.
[21] Luu K N, Phan A T, Kuryavyi V, et al. Structure of the human telomere in K+ solution: an intramolecular (3+1) G-quadruplex scaffold[J]. J Am Chem Soc, 2006, 128(30): 9 963-9 970.
[22] Phan A T, Kuryavyi V, Burge S, et al. Structure of an unprecedented G-quadruplex scaffold in the human c-kit promoter[J]. J Am Chem Soc, 2007, 129(14): 4 386-4 392.
[23] Lim K W, Amrane S, Bouaziz S, et al. Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers[J]. J Am Chem Soc, 2009, 131(12): 4 301-4 309.
[24] Chataigner I I, Gennari C, Piarulli U, et al. Discovery of a new efficient chiral ligand for copper-catalyzed enantioselective michael additions by high-throughput screening of a parallel library[J]. Angew Chem Int Ed Engl, 2000, 39(5): 916-918.
[25] Seneci P, Miertus S. Combinatorial chemistry and high-throughput screening in drug discovery: different strategies and formats[J]. Mol Divers, 2000, 5(2): 75-89.
[26] Potyrailo R A, Chisholm B J, Olson D R, et al. Development of combinatorial chemistry methods for coatings: high-throughput screening of abrasion resistance of coatings libraries[J]. Anal Chem, 2002, 74(19): 5 105-5 111.
[27] Fonseca M H, List B. Combinatorial chemistry and high-throughput screening for the discovery of organocatalysts[J]. Curr Opin Chem Biol, 2004, 8(3): 319-326.
[28] Diller D J. The synergy between combinatorial chemistry and high-throughput screening[J]. Curr Opin Drug Discov Devel, 2008, 11(3): 346-355.
[29] Zhou Q, Li L, Xiang J, et al. Screening potential antitumor agents from natural plant extracts by G-quadruplex recognition and NMR methods[J]. Angew Chem Int Ed Engl, 2008, 47(30): 5 590-5 592.
[30] Zhou Q, Li L, Xiang J, et al. Fast screening and structural elucidation of G-quadruplex ligands from a mixture via G-quadruplex recognition and NMR methods[J]. Biochimie, 2009, 91(2): 304-308.
[31] Hajduk P J, Olejniczak E T, Fesik S W. One-dimensional relaxation- and diffusion-edited NMR methods for screening compounds that bind to macromolecules[J]. J Am Chem Soc, 1997, 119(50): 12 257-12 261.
[32] Price W S. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion .1. Basic theory[J]. Concepts Magn Reson, 1997, 9(5): 299-336.
[33] Price W S. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part Ⅱ. Experimental aspects[J]. Concepts Magn Reson, 1998, 10(4): 197-237.
[34] Dehner A, Kessler H. Diffusion NMR spectroscopy: Folding and aggregation of domains in p53[J]. Chembiochem, 2005, 6(9): 1 550-1 565.
[35] Stebbins J L, Jung D, Leone M, et al. A structure-based approach to retinoid X receptor-alpha inhibition[J]. J Biol Chem, 2006, 281(24): 16 643-16 648.
[36] Fejzo J, Lepre C A, Peng J W, et al. The SHAPES strategy: an NMR-based approach for lead generation in drug discovery[J]. Chem Biol, 1999, 6(10): 755-769.
[37] Johnson E C, Feher V A, Peng J W, et al. Application of NMR SHAPES screening to an RNA target[J]. J Am Chem Soc, 2003, 125(51): 15 724-15 725.
[38] Lepre C A, Peng J, Fejzo J, et al. Applications of SHAPES screening in drug discovery[J]. Comb Chem High Throughput Screen, 2002, 5(8): 583-590.
[39] Leone M, Freeze H H, Chan C S, et al. The Nuclear Overhauser Effect in the lead identification process[J]. Curr Drug Discov Technol, 2006, 3(2): 91-100.
[40] Meyer B, Klein J, Mayer M, et al. Saturation transfer difference NMR spectroscopy for identifying ligand epitopes and binding specificities[J]. Ernst Schering Res Found Workshop, 2004, 44: 149-167.
[41] Hajduk P J, Greer J. A decade of fragment-based drug design: strategic advances and lessons learned[J]. Nat Rev Drug Discov, 2007, 6(3): 211-219.
[42] Shuker S B, Hajduk P J, Meadows R P, et al. Discovering high-affinity ligands for proteins: SAR by NMR[J]. Science, 1996, 274(5292): 1 531-1 534.
[43] Hajduk P J, Sheppard G, Nettesheim D G, et al. Discovery of potent nonpeptide inhibitors of stromelysin using SAR by NMR[J]. J Am Chem Soc, 1997, 119(25): 5 818-5 827.
[44] MacPherson L J, Bayburt E K, Capparelli M P, et al. Discovery of CGS 27023A, a non-peptidic, potent, and orally active stromelysin inhibitor that blocks cartilage degradation in rabbits[J]. J Med Chem, 1997, 40(16): 2 525-2 532.
[45] Petros A M, Dinges J, Augeri D J, et al. Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis[J]. J Med Chem, 2006, 49(2): 656-663.
[46] Mayer M, Meyer B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy[J]. Angew Chem Int Ed Engl, 1999, 38(12): 1 784-1 788.
[47] Mayer M, Meyer B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor[J]. J Am Chem Soc, 2001, 123(25): 6 108-6 117.
[48] Mayer M, James T L. NMR-based characterization of phenothiazines as a RNA binding scaffold[J]. J Am Chem Soc, 2004, 126(13): 4 453-4 460.
[49] Salvatella X, Martinell M, Gairi M, et al. A tetraguanidinium ligand binds to the surface of the tetramerization domain of protein P53[J]. Angew Chem Int Ed Engl, 2004, 43(2): 196-198.
[50] Mayer M, Lang P T, Gerber S, et al. Synthesis and testing of a focused phenothiazine library for binding to HIV-1 TAR RNA[J]. Chem Biol, 2006, 13(9): 993-1 000.
[51] Mayer M, James T L. Detecting ligand binding to a small RNA target via saturation transfer difference NMR experiments in D(2)O and H(2)O[J]. J Am Chem Soc, 2002, 124(45): 13 376-13 377.
[52] Yan J, Kline A D, Mo H, et al. The effect of relaxation on the epitope mapping by saturation transfer difference NMR[J]. J Magn Reson, 2003, 163(2): 270-276.
[53] Ramelot T A, Raman S, Kuzin A P, et al. Improving NMR protein structure quality by Rosetta refinement: a molecular replacement study[J]. Proteins, 2009, 75(1): 147-167.
[54] Williamson M P, Craven C J. Automated protein structure calculation from NMR data[J]. J Biomol NMR, 2009, 43(3): 131-143.
[55] Sharma S, Zheng H, Huang Y J, et al. Construct optimization for protein NMR structure analysis using amide hydrogen/deuterium exchange mass spectrometry[J]. Proteins, 2009, 76(4): 882-894.
[56] Berjanskii M, Tang P, Liang J, et al. GeNMR: a web server for rapid NMR-based protein structure determination[J]. Nucleic Acids Res, 2009, 37(Web Server issue): W670-677.
[57] Salmon L, Bouvignies G, Markwick P, et al. Protein conformational flexibility from structure-free analysis of NMR dipolar couplings: quantitative and absolute determination of backbone motion in ubiquitin[J]. Angew Chem Int Ed Engl, 2009, 48(23): 4 154-4 157.
[58] Raman S, Huang Y J, Mao B, et al. Accurate automated protein NMR structure determination using unassigned NOESY data[J]. J Am Chem Soc, 2010, 132(1): 202-207.
[59] Columbus L, Lipfert J, Jambunathan K, et al. Mixing and matching detergents for membrane protein NMR structure determination[J]. J Am Chem Soc, 2009, 131(21): 7 320-7 326.
[60] Sakakibara D, Sasaki A, Ikeya T, et al. Protein structure determination in living cells by in-cell NMR spectroscopy[J]. Nature, 2009, 458(7234): 102-105.
[61] Pellecchia M, Meininger D, Dong Q, et al. NMR-based structural characterization of large protein-ligand interactions[J]. J Biomol NMR, 2002, 22(2): 165-173.
[62] Mergny J L, Helene C. G-quadruplex DNA: a target for drug design[J]. Nat Med, 1998, 4(12): 1 366-1 367.
[63] Hurley L H. DNA and its associated processes as targets for cancer therapy[J]. Nat Rev Cancer, 2002, 2(3): 188-200.
[64] Neidle S, Parkinson G. Telomere maintenance as a target for anticancer drug discovery[J]. Nat Rev Drug Discov, 2002, 1(5): 383-393.
[65] Hurley L H, Wheelhouse R T, Sun D, et al. G-quadruplexes as targets for drug design[J]. Pharmacol Ther, 2000, 85(3): 141-158.
[66] Hurley L H. Secondary DNA structures as molecular targets for cancer therapeutics[J]. Biochem Soc Trans, 2001, 29(Pt 6): 692-696.
[67] Neidle S, Read M A. G-quadruplexes as therapeutic targets[J]. Biopolymers, 2000, 56(3): 195-208.
[68] Koeppel F, Riou J F, Laoui A, et al. Ethidium derivatives bind to G-quartets, inhibit telomerase and act as fluorescent probes for quadruplexes[J]. Nucleic Acids Res, 2001, 29(5): 1 087-1 096.
[69] Ren J, Chaires J B. Preferential Binding of 3,3′-Diethyloxadicarbocyanine to Triplex DNA[J]. J Am Chem Soc, 2000, 122(2): 424-425.
[70] Borman S. Ascent of quadruplexes[J]. Chem Eng News, 2007, 85(22): 12-14.
[71] Newman D J. Natural products as leads to potential drugs: an old process or the new hope for drug discovery?
[J]. J Med Chem, 2008, 51(9): 2 589-2 599.
[72] Kintzios S E. Terrestrial plant-derived anticancer agents and plant species used in anticancer research[J]. Crit Rev Plant Sci, 2006, 25(2): 79-113.
[73] Balandrin M F, Klocke J A, Wurtele E S, et al. Natural plant chemicals: sources of industrial and medicinal materials[J]. Science, 1985, 228(4704): 1 154-1 160.
[74] Pezzuto J M. Plant-derived anticancer agents[J]. Biochem Pharmacol, 1997, 53(2): 121-133.
[75] Koeppel F, Riou J F, Laoui A, et al. Ethidium derivatives bind to G-quartets, inhibit telomerase and act as fluorescent probes for quadruplexes[J]. Nucleic Acids Res, 2001, 29(5): 1 087-1 096.
[76] Gomez D, Mergny J L, Riou J F. Detection of telomerase inhibitors based on G-quadruplex ligands by a modified telomeric repeat amplification protocol assay[J]. Cancer Res, 2002, 62(12): 3 365-3 368.
[77] Rosu F, De Pauw E, Guittat L, et al. Selective interaction of ethidium derivatives with quadruplexes: an equilibrium dialysis and electrospray ionization mass spectrometry analysis[J]. Biochemistry, 2003, 42(35): 10 361-10 371.
[78] Ladame S, Whitney A M, Balasubramanian S. Targeting nucleic acid secondary structures with polyamides using an optimized dynamic combinatorial approach[J]. Angew Chem Int Ed Engl, 2005, 44(35): 5 736-5 739.
[79] Meiboom S, Gill D. Modified Spin-Echo Method for Measuring Nuclear Relaxation Times[J]. Rev Sci Instrum, 1958, 29(8): 688-691.
[80] Stockman B J, Dalvit C. NMR screening techniques in drug discovery and drug design[J]. Prog Nucl Magn Reson Spectrosc, 2002, 41(3-4): 187-231.
[81] Zhou Q, Bi Y, Xiang J, et al. Investigation on a potential targeting drug delivery system consisting of folate, mitoxantrone and human serum albumin[J]. Chinese J Chem, 2008, 26(8): 1 385-1 389.
[82] Zartler E R, Yan J, Mo H, et al. 1D NMR Methods in ligand-receptor interactions[J]. Curr Top Med Chem, 2003, 3(1): 25-37.
[83] Xu Q, Sachs J R, Wang T C, et al. Quantification and identification of components in solution mixtures from 1D proton NMR spectra using singular value decomposition[J]. Anal Chem, 2006, 78(20): 7 175-7 185.
[84] Lepre C A, Moore J M, Peng J W. Theory and applications of NMR-based screening in pharmaceutical research[J]. Chem Rev, 2004, 104(8): 3 641-3 676.
|