[1] Lauterbur P C. Image formation by induced local interaction: examples employing nuclear magnetic resonance[J]. Nature 1973, 242:190191.
[2] Alper J. Biomedicine in the age of imaging[J]. Science, 1993, 261, 30 July:554-561.
[3] KAN Lo-Sing(甘鲁生), CHEN Ching-Nien(陈庆年). Pictorial Introduction to Magnetic Resonance Imaging (a,b), 磁共振造影图解)(上、下)[J]. Instruments Today (科仪新知),1997,19(2):78-86; 19(3):64-70.
[4] Lauffer R B. MRI Contrast Agents: Basic principles, in clinical Magnetic Resonance Imaging(2nd ed.)[M]; Edelman R R, Zlatkin M B, Hesselik J R. Co.: Philadelphia, 1996, 1: P177.
[5] Caravan P, Ellison J J, McMurry T J, et al. Gadolinium(Ⅲ) chelates as MRI contrast agents: Structure, dynamics, and applications[J]. Chem Rev, 1999, 99: 2 293-2 352.
[6] Lauffer R B. Paramagnetic metal complexes as water proton relaxation agents for NMR imagining: theory and design[J]. Chem Rev, 1987, 87: 901-927.
[7] ZHANG Shan-rong(张善荣), REN Ji-ming(任吉民), PEI Feng-kiu(裴奉奎). The research progress of MRI contrast agents[J]. Progress in Chemistry(化学进展), 1995, 7(2):98-112.
[8] CHEN Xing-rong(陈星荣), SHEN Tian-zhen, (沈天真), DUAn Cheng-xiang(段承祥), et al. Whole Body CT and MRI (全身CT和MRI)[M]. Shanghai(上海): Shanghai Medical Universty Press(上海医科大学出版社),1994. P67
[9] Qiu Zu-wen(裘祖文), Pei Feng-kiu(裴奉奎). Spectroscopy of Nucnear Magnetic Resonsance (核磁共振波谱)[M]. Beijing(北京): Science Press(科学出版社),1989. P533.
[10] Liang Z P, Lauterbur P C. Principles of magnetic resonance maging, A signal processing perspective[M]. New York: Spie Optical Engineering Press, 2000.
[11] Weinmann H J, Brasch R C, Press W R, et al. Characteristics of gadolinium-DTPA complex: A potential MRI contrats agent[J]. Am J Roentgenol, 1984, 142: 619-624.
[12] Jenkins B G, Lauffer R B. Solution structure and dynamics of lanthanide(Ⅲ) complexes of diethylenetriaminepentaacetate: a two-dimensional NMR analysis[J]. Inorg Chem, 1988, 27(26): 4 730-4 738.
[13] Hernandez G, Brynt R G, Tweedle M F. Proton magnetic relaxation dispersion in aqueous glycerol solutions of Gd(DTPA)2- and Gd(DOTA)-
[J]. Inorg Chem, 1990, 29(25): 5 109-5 113.
[14] Jenkins B G, Lauffer R B. Solution structure and dynamics of tanthanide(Ⅲ)complexes of diethylenetriaminepentaacetate: a twodimensional NMR analysis[J]. Inorg Chem, 1988, 27:4 730-4 738.
[15] Weinmann H J, Gris H, Speck U. In MR Imaging of the Skull and Brain[M]: Berlin, Heidelberg, A Correlative Text-Atlas ed. Sartor, K, Springer-Verlag, 1992. P23.
[16] Tweedle M F, Wedeking P, Kumar K. Biodistribution of radiolabeled, formulated gadopentetate, gadoteridol, gadoterate, and gadodiamide in mice and rats[J]. Invest Radiol, 1995, 30: 372-380.
[17] Uggeri F, Aime S, Anelli P L, et al. Novel contrast agents for MRI synthesis and characterization of the ligand BOPTA and its Ln(Ⅲ) complexes (Ln=Gd, La, Lu)[J]. Inorg Chem, 1995, 34: 633-642.
[18] Ronge V M, Wells J W, Williams N M, et al. The use of gadolinium-BOPTA on MRI in brain infection[J]. Invest Radiol, 1996, 31(5): 294-299.
[19] Li D, Dolan R P, Walovitch R C, et al. Three-Dimensional MRI of Coronary Arteries using an Intravascular Contrast Agent[J]. Magn Reson Med, 1998, 39:1 014-1 018.
[20] Schuhmann-Giampieri G, Schmitt-Willich H, Press W R, et al. Preclinical evaluation of Gd-EOB-DTPA as a contrast agent in MRI of the hepatobiliary system[J]. Radiology, 1992, 183: 59-64.
[21] Weinmann H J, Schuhmann-Giampieri G, Schmitt-Willich H, et al. A new lipophilic gadolinium chelate as a tissue-specific contrast medium for MRI[J]. Magn Reson Med, 1991, 22: 233-237.
[22] Marchal G, Zhang X, Ni Y, et al. Comparison between Gd-DTPA, Gd-EOB-DTPA, and Mn-DPDP in induced HCC in rats: Acorrelation study of MRI, microangiography, and histology[J]. Magn Reson Imag, 1993, 11: 665-674.
[23] Muhler A, Heinzelmann I, Weinmann H J. Elimination of gadolinium-ethoxybenzyl-DTPA in a rat model of severely impaired liver and kidney excretory function. An experimental study in rats[J]. Invest Radiol, 1994, 29: 213-216.
[24] Scott D M, Laffer R B. Paramagnetic metal complexes of 1-(p-n-butylbenzyl) diethlenetriamine pentaacetic acid for diagnostic imaging contrast agents[P]. WO 95-US 4045(CA124:111275).
[25] Geraldes C F G C, Urbano A M, Hoefnagel M A, et al. Multinuclear magnetic resonance study of the structure and dynamics of lanthanide(III) complexes of the bis(propylamide) of diethylenetriaminepentaacetic acid in aqueous solution[J]. Inorg Chem, 1993, 32(11):
2 426-2 432.
[26] Cacheris W P, Quay S C, Rocklage S M. The relationship between thermodynamics and the texicity of gadolinium complexes[J]. Magn Reson Imaging, 1990, 8: 467-481.
[27] Rizkalla E N, Choppin G R, Cacheris W. Thermodynamics, PMR, AND fluorescence studies for the complexation of trivalent lanthanides, Ca2+, Cu2+, and Zn2+ by diethylenetriaminepentaacetic acid bis(methylamide)[J]. Inorg Chem, 1993, 32: 582-586.
[28] Greco A, McNamara M T, Lanthiez P, et al. Gadodiamide injection: nonionic gadolinium chelate for MR imaging in the brain and spine: phase Ⅱ-Ⅲ clinical trial[J]. Rdiology, 1990, 176: 451-456.
[29] Gonzalez G, Powell D H, Tissieres V, et al. Water-exchange, electronic relaxation, and rotational dynamics of the MRI contrast agent[Gd(DTPA-BMA)(H2O)] in aqueous solution: a variable pressure, temperature, and magnetic field oxygen-17 NMR study[J]. J Phys Chem, 1994, 98(1): 53-59.
[30] Saeed M, Li H T, Wendland M F, et al. Comparison of cardiovascular response to ionic and nonionic magnetic resonance susceptibility contrast agents[J]. Invest Radiol, 1994, 29(3): 319-329.
[31] Watson A D. The use of gadolinium and dysprosium chelate coplexes as contrast agents for MRI[J]. J Alloy Compd, 1994, 207-208: 1419.
[32] Konings M S, Dow W C, Love D B, et al. Gadolinium complexation by a new diethylenetriamine pentaacetic acid-amide ligand. Amide oxygen coordination[J]. Inorg Chem, 1990, 29(8): 1 488-1 491.
[33] Aime S, Fasano M, Paoletti S, et al. Towards novel non-ionic contrast agents for MRI: synthesis and characterization of[(bisphinylamineDTPA)m(Ⅲ)] complexes (M=Lu, Y and Gd)[J].Gazz Chim Ital, 1995, 125(3): 125-131.
[34] Li Xiao-jing(李晓晶), Feng Jiang-hua(冯江华), Jing Feng-ying(景凤英), et al. NMR Studies of Gd(DTPA-BIN) in Bovine Serum Albumin Solution and its Thermodynamic Properties[J]. Chinese J Magn Reson(波谱学杂志), 1999, 16(6): 525-530.
[35] Feng Jiang-hua(冯江华), Li Xiao-jing(李晓晶), Li Xin-yu(李欣宇), et al. Studies on the solution structures of lanthanide(Ⅲ)complexes of DTPA-BIN by NMR[J]. Chem J Chin Univ(高等学校化学学报), 2001, 22(10): 1 615-1 619.
[36] Yu Kai-chao(俞开潮), Wan Fu-xian(万福贤), Zhang Yan(张焱), et al. Synthesis and MRI Relaxation Enhancement of Mono-ester-amido Gadolinium Complexes[J]. Chin J Inorg Chem(无机化学学报), 2004, 20(4): 389-393.
[37] Subramania G, Schneider R F. Metal chelating agents for medical application[P]. US: 5463030, 1995.
[38] Elizonde G E, Fretz C J, Stark D D, et al. Preclinical evaluation of Mn-DPDP: new paramagnetic hepatobiliary contrast agent for MR imaging
[J]. Radiology, 1991, 178: 73-78.
[39] Aicher K P, Laniado M, Kopp A F, et al. Mn-DPDP-enhanced MR imaging of malignant liver lesions: efficacy and safety in 20 patients[J]. J Magn Reson Imag, 1993, 3:731-737.
[40] Tweedle M F, Gaughan G T, Hagan J, et al. Characterization of Paramagnetic Coordination Compounds as Potentially Useful NMR Contrast Agents[J]. Nucl Med Biol, 1988, 15: 31-52.
[41] Chang C A. Lanthanide Magnetic Resonance Imaging Contrast Agents: Thermodynamic, Kinetic, and Structural Properties of Lanthanide(Ⅲ) Macrocyclic Complexes[J]. Eur J Solid State Inorg Chem, 1991, 28, 237-244.
[42] Magerstadt M, Gansow O A, Brechbiel M W, et al. Gadolinium(DOTA): an alternative to gadolinium(DTPA) AS A t1,2 relaxation agent for NMR imaging or spectroscopy\[J]. Magn Reson Med, 1986, 3: 802-812.
[43] Oudkerk M, Sijens P E, Beek E J R Van. Safety and efficacy of Dotarem (Gd-DOTA) versus Magnevist (Gd-DTPA) in MRI of the central nervous system[J]. Invest Radiol, 1995, 30(2): 75-78.
[44] Chang C A, Francesconi L C, Malley M F, \%et al.\% Synthesis, characterization, and crystal structures of M(DO3A) (M=Fe, Y, Gd)[J]. Inorg Chem, 1993, 32: 3 501-3 508.
[45] Wang X Y, Jin T Z, Comblin V, et al. A kinetic investigation of the lanthanide DOTA chelates . Stability and rates of formation and of dissociation of a macrocyclic Gd(Ⅲ) polyaza polycarboxylic MRI contrast agent[J]. Inorg Chem, 1992, 31: 1 095-1 099.
[46] Hoeft S, Roth K. Struktur der Lanthanid-DOTA-Komplexe in Losung[J]. Chem Ber, 1993, 126:869.
[47] Zhang X, Chang C A, Brittain H G, et al. pH Dependence of relaxivities and hydration numbers of gadolinium(Ⅲ) complexes of macrocyclic amino carboxylates[J]. Inorg Chem, 1992, 31(26): 5 597-5 600.
[48] Brittain H G, Desreux J F. Luminescence and NMR studies of the conformational isomers of lanthanide complexes with an optically active polyaza polycarboxylic macrocycle[J]. Inorg Chem, 1984, 23(26): 4 459-4 466.
[49] Seri S, Azuma M, Iwai K. Gadolinium complex of 1,4,7,10-tetraazacyclodo-decane-1,4,7,10-α′,α″,α-tetrakis(methyllacetic acid) as magnetic resonance imaging agent[P]. EP: 481420 (CA117:43666), 1992.
[50] Aime S, Botta M, Ermondi G, et al. Synjesis and NMRD studies of Gd3+ complexes of macrocyclic polyamino polycarboxylic ligands bearing b-benzyloxy-a-propionic residues[J]. Inorg Chem, 1992, 31: 1 100-1 103.
[51] Kang S I, Rangathan R S, Emswiler J E, et al. Synthesis, characterization, and crystal structure of the gadolinium(Ⅲ) chelate of (1R,4R,7R)-α,α′,α″-trimethyl-1,4,7,10- tetraazacyclododecane-1,4,7-triacetic acids (DO3MA)[J]. Inorg Chem, 1993, 32: 2 912-2 918.
[52] Kumar K, Chang C A, Tweedle M F. Equilibrium and kinetic studies of lanthanide complexes of macrocyclic polyamino carboxylates[J]. Inorg Chem, 1993, 32: 587-593.
[53] Dischino D D, Delaney E J, Emswiler J E, et al. Synthesis of nonionic gadolinium chelates used as contrast agents for MRI. 1,4,7-tri(carboxymethyl)-10-substituted-1,4,7,10-tetraazacyclododecanes and their corresponding gadolinium chelates[J]. Inorg Chem, 1991, 30:
1 265-1 269.
[54] Winkelman J, Hayes J E. Distribution of endogenous and parenterally administered porphyrin in viable and necrotic portions of a trasplantable tumour[J]. Nature, 1963, 200: 903-904.
[55] Megnin F, Faustino P J, Lyon R C, et al. On the Mechanism of Selective Retention of Porphyrins and Metalloporphyrins by Cancer Cells[J]. Biochim Biophys Acta, 1987, 929: 173-181.
[56] Chopp M, Hetzel F W, Jiang Q. Dose-ependent metabolic response of mammary carcinoma to photodynamic therapy[J]. Radiat Res, 1990, 121: 288-294.
[57] Wilmes L J, Hoehnm B M, Els T, et al. In vivo relaxometry of three brain tumors in the rat: effect of Mn-TPPS, a tumor-selective contrast agent[J]. J Magn Reson Imag, 1993, 3(1):5-12.
[58] Hoehn-Berlage M, Norris D, Bockhorst K, et al. T1 snapshot FLASH measurement of rat brain glioma: kinetics of the tumor-enhancing contrast agent manganese(Ⅲ) tetraphenylporphine sulfonate[J]. Magn Reson Med, 1992, 27: 201-213.
[59] Bockhorst K, Hoehn-Berlage M, Kocher M, et al. Proton relaxation enhancement in experimental brain tumors in vivo NMR study of manganese(Ⅲ)TPPS in rat brain gliomas[J]. Magn Reson Imag, 1990, 8: 499.
[60] Place D A, Faustino P J, Berghmans K K. MRI contrast-dose relationship of manganese(III)tetra(4-sulfonatophenyl) porphyrin with human xenograft tumors in nude mice at 2.0 T[J]. Magn Reson Imag, 1992, 10 (6): 919-928.
[61] Dong P, Choi P, Schmiedl U P, et al. Interaction of manganese-mesoporphyrin with oleic acid vesicles[J]. Biochemistry, 1995, 34(10): 3 416-3 422.
[62] Sessler J L, Mody T D, Hemmi G W, et al. Synthesis and structural characterization of lanthanide(Ⅲ) texaphyrins[J].Inorg Chem, 1993, 32(14): 3 175-3 187.
[63] Sessler J L, Hemmi G, Mody T D, et al. Texaphyrins: Synthesis and Applications[J]. Acc Chem Res, 1994, 27(2): 43-50.
[64] Brasch R C. Rationale and applications for macromolecular Gd-based contrast agents[J]. Magn Reson Med, 1991, 22: 282-287.
[65] Braybrook J H, Hall L D. Synthesis and evaluation of parmagnetic particulates as contrast agents for MRI[J]. Carbohyd Res, 1989, 87:C6.
[66] Meyer D, Schaffer M, Chambon C, et al. Paramagnetic dextrans as magnetic resonance blood pool tracers[J]. Invest Radiol, 1994, 29(S2): S90-92.
[67] Ranney D F. Physically and chemically stabilized polyatomic clusters for MRIand spectral enhancement[P]. WO: 9217214 (CA18:3 150), 1992.
[68] Brasch R C, Mann J S, Nitecki D E. Macromolecular contrast media for MRI[P]. WO 9427498, 1994 (CA122:155305)
[69] Cavagna F, Luchinat C, Scozzafava A, et al. Polymetallic macromolecules are potential contrast agents of improved efficiency[J]. Magn Reson Med, 1994, 31(1): 58-60.
[70] Adam G, Neuerburg J, Spuentrup E, et al. Dinamic contrast-enhanced MRI of the upper abdomen: enhancement properties of gadobutrol, Gd-DTPA-polylysine, and Gd-DTPA-cascade-polymer[J]. Magn Reson Med, 1994, 32(5): 622-628.
[71] Unger E C. Polymers as contrast media for MRI[P], WO: 9115753 (CA116:79514), 1991.
[72] Unger E C. Polymers as contrast media for MRI[P], WO: 9408509 (CA121:19085), 1994.
[73] Snow R A, Ladd D L, Toner J L, et al. MRI compositions based on poly(alkylene oxide)[P]. WO: 9408629 (CA121:128950), 1994.
[74] Bogdanov A A, Weissleder R, Frank H W, et al. A new macromolecule as a contrast agent for Mrangiography: preparation,properties and animal studies[J]. Radiology, 1993, 187(3): 701-706.
[75] Kocian O, Chiu K W, Demeure R, et al. Synthesis and characterization of new polyethyleneoxy substituted salicylaldimine Schiff bases and some corresponding reduced tetra- and penpaaza ligands and their gadolinium(Ⅲ) complexes: new potential contrast agents in MRI[J]. J Chem Soc, Perk T 1,1994, (5): 527-535.
[76] Wiener E C, Brechbiel M W, Brothers H, et al. Dendrimerbased metal chelates: A new class of magnetic resonance imaging contrast agents[J]. Magn Reson Med, 1994, 31: 1-8.
[77] Yu Kai-chao(俞开潮), Zhuo Ren-xi(卓仁禧). Synthesis and NMR Relaxivity of Macromolecular Polyester Ligands and Their Gadolinium (Ⅲ) Complexes[J]. Acta Pylymerica Sinica(高分子学报), 1996, (4): 450-455.
[78] Fu Yan-jin, Zhuo Ren-xi. Studies on hepatocyte- targeting MRImacromolecular contrast media[J]. Chem Res Chinese Univ,1997, 13(4): 336.
[79] Bai Zhen-wu(柏正武), Yu Kai-chao(俞开潮), Zhuo Ren-xi(卓仁禧). Preparation of amphiphilic oigomer Gd(Ⅲ) complexes with liverselective MRI property[J]. Chem J Chin Univ (高等学校化学学报), 2004, 25(8): 1 582-1 584.
[80] Yu Kai-chao, Wang Xin-bing, Ye Chao-hui, et al. Synthesis, relaxivity and MRI enhancement of linear oligo-Gd(Ⅲ) complexes with poly (DTPA-ester) ligands derived from amino acids[J]. Chin J Chem, 2001, 19(8): 788-793.
[81] Yu Kai-chao, Ye Chao-hui, Wang Xin-bing, et al. Synthesis and T1-relaxation of enhancement of neutral oligomeric Mn(Ⅲ) complexes as MRI contrast agents[J]. Chemical J on Internet, 2001, 3(8): 35.
[82] Unger E, Fritz T, Wu G L, et al. Liposomal MR contrast agents[J]. J Liposome Res, 1994, 4(2): 811-834.
[83] Unger E, Shen D K, Fritz T, et al. Liposomes bearing membrane-bound complexes of manganese as MR contrast agents[J]. Invest Radiol, 1994, 29: S168-169.
[84] Klaveness J, Redford K, Rongved P, et al. Polymer contrast agents for ultrasonic and MRI[P]. WO: 9317718 (CA119:265961), 1995.
[85] D’Arrigo J S. Medical-grado lipid-coated microbubbles, paramagnetic labeling thereof and their therapeutic use[P]. EP: 467031 (CA116:211565), 1992.
[86] Tilcock C. Liposomal blood pool agents for nuclear medicine and MRI[J]. J Liposome Res, 1994, 4(2): 909-936.
[87] Schwendener R A. Liposomes as carriers for paramagnetic gadolinium chelates as organ specific contrast agents for MRI[J]. J Liposome Res, 1994, 4(2): 837-855.
[88] Meade T J,Fraser S E, Jacobs R E. Magnetic Resonance Imaging Agents for the In Vivo Detection of Physiological Processes[P]. US: Patent 5707605, 1997.
[89] Mikiwa M, Yokawa T, Miwa N, \%et al.\% An Intelligent MRI Contrast Agent for Tumor Sensing[J]. Acad Radiol,2002, 9Suppl 1: S109-111.
[90] Moats R A, Franser S E, Meade T J A. Smart Magnetic Resonance Imaging Agent That Reports on Specific Enzymatic Activity[J]. Angew Chem Int Edit Engl, 1997, 36(7): 726-728.
[91] Nivorozhkin A L, Kolodziej A F, Caravan P, et al. Enzyme-Activated Gd3. Magnetic Resonance Imaging Contrast Agents with a Prominent Receptor-Induced Magnetization Enhancement[J]. Angew Chem Int Edit Engl, 2001, 40: 2 903-2 906.
[92] Louie A Y, Huber M M, Ahrens E T, et al . In vivo visualization of gene expression using magnetic resonance imaging[J]. Nat Biotechnol, 2000, 18: 321-325.
[93] Louie A, Meade T J. Metal Complexes as Enzyme Inhibitors[J]. Chem Rev, 1999, 99: 2 711-2 734.
[94] Henkelman R M, Stanisz G J, Menezes N, et al. Can MTR be used to assess cartilage in the presence of Gd-DTPA2-[J]. Magn Reson Med, 2002, 48: 1 081-1 084.
[95] Nimrod M, Raanan M , Joel M, et al. Functional sodium magnetic resonance imaging of the intact rat kidney[J]. Kidney Int, 2004, 65: 927-935.
[96] Hancu I, Boada F E, Shen G X. Three-dimensional triple-quantum-filtered (23)Na imaging of in vivo human brain[J]. Magn Res Med, 1999, 42(6): 1 146-1 154.
[97] Lancaster L, Bogdan A R, Kundel H L, et al. Sodium MRI with coated magnetite: measurement of extravascular lung water in rats[J]. Magn Reson Med, 1991 May;19 (1): 96-104.
[98] Caravan P, Greenwood J M, Welch J T, et al. Gadolinium-binding helix-turn-helix peptides: DNA-dependent MRI contrast agents[J]. Chem Commun, 2003, (20): 2 574-2 575.
[99] Jain S, Welch J T, Horrocks W D, et al. Europium Luminescence of EF-Hand Helix-Turn-Helix Chimeras: Impact of pH and DNA-Binding on Europium Coordination[J]. Inorg Chem, 2003, 42(24): 8 098-8 105.
[100] ]Li W-H, Fraser S E, Meade T J. A Calcium-Sensitive Magnetic Resonance Imaging Contrast Agent[J]. J Am Chem Soc, 1999, 121(6):1 413-1 414.
[101] Brasch R C, London D A, Wesbey G E, et al. Work in progress: nuclear magnetic resonance study of a paramagnetic nitroxide contrast agent for enhancement of renal structures in experimental animals[J]. Radiology, 1983, 147: 773-779.
[102] Brasch R C. Radiology, Work in progress: Methods of contrast enhancement for NMR imafing and potential applications[J]. Radiology, 1983, 147: 781-788.
[103] Bennett H F, Brown R D, Koenig S H, et al. Effects of nitroxide on the magnetic field and temperature dependence of 1/T1 of solvent water protons[J]. Magn Reson Med, 1987, 4: 93-111.
[104] Vallet P, Haverbeke Y V, Bonnet P A, et al. Relaxivity enhancement of low molecular weight nitroxide stable free radicals: Importance and medium[J]. Magn Reson Med, 1994, 32(1): 11-15.
[105] Ehman R L, Wesbey G E, Moon K L, et al. Enhanced MRI of tumors utilizing a new nitroxyl spin label contrast agent[J]. Magn Reson Imag, 1985, 3: 89-97.
[106] Couet W R, Brasch R C, Sosnovsky G, et al. Factors affecting nitroxide reduction in ascobate solution and tissue homogenates[J]. Magn Reson Imag, 1985, 3: 83-88.
[107] Gallez B, Demeure R, Debuyst R, et al. Evauation of nonionic nitroxyl lipids as potential oggan-specific contrast agents for MRI[J]. Magn Reson Imag, 1992, 10: 445-455.
[109] Keana J F W. Amplifier molecules for enhancement of diagnosis and therapy[P]. US: 5135737 (CA119:84670), 1989.
[110] Brik M E, Van D N M, Nicolas L, et al. Synthesis of dinitroxides of potential use as contrast agent in MRI[J]. Heterocycles, 1994, 38(10):2 183-2 189.
[111] Liebmann J, Bourg J, Krishna M, et al. Pharmacokinetic properties f nitroxide-labeled albumin in mice[J]. Life Sci, 1994, 54: PL503-509.
[112] Gallez B, Lacour V, Demeure R, et al. Spin labeled arabinogalactan as MRI contrast agent[J]. Magn Reson Imag, 1994, 12(1): 61-69.
[113] Gallez B, Debuyst R, Dejehet F, et al. Relaxivity and molecular dynamics of spin labeled polysaccharides[J]. MAGMA( N.Y), 1994, 2(1): 61-68.
[114] Unger E C, Wu G L. Polymeric molecules containing chelae moieties and nitroxide moieties as hybrid magnetic resonance contrast agents, and their preparation[P]. US: 5407657 (CA123:28655), 1995.
[115] Yu Kai-chao(俞开潮), Zhuo Ren-xi(卓仁禧). Study on the Synthesis and Relaxivity of Nitroxyl-Labeled Polyphosphates[J]. Chinese J Magn Reson(波谱学杂志), 1996, 13(5): 417-422.
[116] Yu Kai-chao(俞开潮), Zhuo Ren-xi(卓仁禧). Synthesis and Characterization of Spin-labeled Terpolymer Ligands and Their Gadolinium (Ⅲ) Complexes"[J], J Wuhan University (Nat. Sc. Ed.),(武汉大学学报,自然学科版)[J], 1998, 44(4): 412-416.
[117] Colacicchi S, Ferrari M, Sotegiu A. In vivo electron paramagnetic resonance spectroscopy/imaging: first experiences, problems, and perspectives[J]. Int J Biochem, 1992, 24: 205-214.
[118] Grucker D. In vivo detection of injected free radicals by Overhauser effect imaging[J]. Magn Reson Med, 1990, 14: 140-147.
[119] Renshaw R F, Owen C S, McLaughin A C, et al. Ferromagnetic Contrast Agents: A New Approach[J]. Magn Reson Med, 1986, 3: 217-225.
[120] Stark D D, Weissledar R, Elizando G. Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging imaging of the liver[J]. Radiology, 1988, 168: 297-301.
[121] Bach-Gansmo T, Fahlvik A K, Ericsson A, et al. Superparamagnetic iron oxide for liver imafing. Comparison among three different preparations[J]. Invest Radiol, 1994, 29(3): 339-344.
[122] Bulte J W M, Douglas T, Mann S, et al. Magnetoferritin: Bioineralization as a novel molecular approach in the design of iron-oxide-based MR contrast agents[J]. Invest Radiol, 1994, 29(S2): S214-216.
[123] Ferrucci J T, Stark D D. Iron oxide enhanced MR imaging of the liver and spleen: review of the first 5 year[J]. AJR, 1990, 155: 943-950.
[124] Hahn P F. Advances in contrast enhanced MR imaging. Gastrointestinal contrast agents[J]. AJR 1991, 156:252-254.
[125] Runge V M, Pels Rijken T H, Davidoff A, et al. Contrast enhanced MR imaging of the liver[J]. JMRI, 1994, 4:281-289.
[126] Okon E, Pouliquen D, Okon P, et al. Biodegration of magnetite dextran nanoparticles in the rat: A histologic and biophysical stydy[J]. Lab Invest, 1994, 71(6): 895-903.
[127] Kirpotin D, Chan D C F, Bunn P A Jr. Magnetic microparticles[P]. US: 5411730 (CA123:17931), 1995.
[128] Palmacci S, Josephson L, Groman E V. Synthesis of polymer-covered superparamagnetic oxide colloids for MR contrast agents or other applications[P]. WO: 9505669 A1 (CA122:309897), 1995.
[129] Papisov M T, Bogdanov A Jr, Schaffer B, et al. Colloidal magnetic resonance contrast agents: effect of particle surface on biodiatribution[J]. J Magn Magn Mater, 1993, 122: 383-386.
[130] Yu Kai-chao(俞开潮), Zhang Yan(张焱), Yang Yun-huang(杨运煌), et al. Preparation and Negative MRI Spin-Spin Relaxation nhancement of Superparamagnetic Iron Oxides[J]. Chinese J Mag Reson(波谱学杂志), 2002, 19(2):143-148.
[131] Rogers J, Lewis J, Josephson L. The use of AMI-227 as an oral contrast agent for MRI[J]. Invest Radiol, 1994, 29(S2): S81-82.
[132] Rubin D L, Muller H H, Young, S W, et al. Influence of viscosity on WIN 39996 as a contrast agent for gastrointestinal MRI[J]. Invest Radiol, 1995, 30(4): 226-231.
[133] Gundersen H G, Klaveness J. Particular contrast media for MRI in diagnosis[P]. WO: 9101147 (CA115:57188), 1991.
[134] Toth E, Vauthey S, Pubanz D, Merbach A E. Water exchange and rotation dynamics Gadolinium(Ⅲ) complex [BO{Gd(DO3A)(H2O)}2]: Avariable-Temperature and -pressure 17O NMR study[J]. Inorg Chem, 1996, 35: 3 375-3 379.
[135] Powell D H, Ni Dhubhghaill O M, Pubanz D, et al. High-pressure NMR kinetics. Part 74. Structure and dynamic parameters obtained from 17O NMR, EPR, AND NMRD studies monomeric and dimeric Gd3+ complexes of interest in MRI: An integrated and theoretically self-consistent approach[J]. JACS, 1996, 118: 9 333-9 346. |