[1] |
MÖBIUS K, SAVITSKY A, SCHNEGG A, et al. High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer[J]. Phys Chem Chem Phys, 2005, 7(1): 19-42.
pmid: 19785170
|
[2] |
DUSS O, YULIKOV M, JESCHKE G, et al. EPR-aided approach for solution structure determination of large RNAs or protein-RNA complexes[J]. Nat Commun, 2014, 5(1): 3669.
|
[3] |
ROESSLER M M, SALVADORI E. Principles and applications of EPR spectroscopy in the chemical sciences[J]. Chem Soc Rev, 2018, 47(8): 2534-2553.
doi: 10.1039/c6cs00565a
pmid: 29498718
|
[4] |
BABUNTS R A, GURIN A S, EDINACH E V, et al. Non-Kramers iron S = 2 ions in β-Ga2O3 crystals: high-frequency low-temperature EPR study[J]. J Appl Phys, 2022, 132(15): 155703.
|
[5] |
PENG Z, DALLAS J, TAKAHASHI S. Reduction of surface spin-induced electron spin relaxations in nanodiamonds[J]. J Appl Phys, 2020, 128(5): 054301.
|
[6] |
HE Y, SHI Z F, ZHAO X X, et al. Design and performance of a new multifunction X-band EPR spectrometer[J]. Chinese J Magn Reson, 2022, 39(1): 1-10.
|
|
贺羽, 石致富, 赵新星, 等. 新型X波段多功能EPR谱仪的设计与性能[J]. 波谱学杂志, 2022, 39(1): 1-10.
doi: 10.11938/cjmr20212965
|
[7] |
YU Y Y, LI X Y, SUN B, et al. Design and optimization of terahertz directional coupler based on hybrid-cladding hollow waveguide with low confinement loss[J]. Chin Phys B, 2015, 24(6): 068702.
|
[8] |
PARIZH M, LVOVSKY Y, SUMPTION M. Conductors for commercial MRI magnets beyond NbTi: requirements and challenges[J]. Supercond Sci Technol, 2016, 30(1): 014007.
|
[9] |
FEHER G. Sensitivity considerations in microwave paramagnetic resonance absorption techniques[J]. Bell Syst Tech J, 1957, 36(2): 449-484.
|
[10] |
MÖBIUS K, SAVITSKY A. High-field/high-frequency EPR spectroscopy in protein research: principles and examples[J]. Appl Magn Reson, 2023, 54(2): 207-287.
|
[11] |
TELSER J, KRZYSTEK J, OZAROWSKI A. High-frequency and high-field electron paramagnetic resonance (HFEPR): a new spectroscopic tool for bioinorganic chemistry[J]. J Biol Inorg Chem, 2014, 19: 297-318.
doi: 10.1007/s00775-013-1084-3
pmid: 24477944
|
[12] |
ROHRER M, MACMILLAN F, PRISNER T F, et al. Pulsed ENDOR at 95 GHz on the primary acceptor ubisemiquinone in photosynthetic bacterial reaction centers and related model systems[J]. J Phys Chem B, 1998, 102(23): 4648-4657.
|
[13] |
CLAUSS C, DRESSEL M, SCHEFFLER M. Optimization of coplanar waveguide resonators for ESR studies on metals[C]// J Phys Conf Ser. IOP Publishing, 2015, 592(1): 012146.
|
[14] |
PETASIS D T, HENDRICH M P. Quantitative interpretation of multifrequency multimode EPR spectra of metal containing proteins, enzymes, and biomimetic complexes[M]// Methods in Enzymology. Academic Press, 2015, 563: 171-208.
|
[15] |
WEIL J A, BOLTON J R. Electron paramagnetic resonance: elementary theory and practical applications[M]. USA: John Wiley & Sons, 2007.
|
[16] |
WEBB A. Cavity-and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging[J]. Prog Nucl Magn Reson Spectrosc, 2014, 83: 1-20.
|
[17] |
EARLE K A, FREED J H. Quasioptical hardware for a flexible FIR-EPR spectrometer[J]. Appl Magn Reson, 1999, 16(2): 247-272.
|
[18] |
MÖBIUS K. High-field/high-frequency EPR/ENDOR—a powerful new tool in photosynthesis research[J]. Appl Magn Reson, 1995, 9: 389-407.
|
[19] |
HAINDL E, MÖBIUS K. A 94 GHz EPR spectrometer with Fabry-Perot resonator[J]. Z Naturforsch A, 1985, 40(2): 169-172.
|
[20] |
EARLE K A, DZIKOVSKI B, HOFBAUER W, et al. High-frequency ESR at ACERT[J]. Magn Reson Chem, 2005, 43(S1): S256-S266.
|
[21] |
NEUGEBAUER P. Development of heterodyne high field/high frequency electron paramagnetic resonance spectrometer at 285 GHz[D]. Grenoble: Université Joseph-Fourier-Grenoble I, 2010
|
[22] |
BURGHAUS O, ROHRER M, GOTZINGER T, et al. A novel high-field/high-frequency EPR and ENDOR spectrometer operating at 3 mm wavelength[J]. Meas Sci Technol, 1992, 3(8): 765-774.
|
[23] |
BROOKER G. Modern classical optics[M]. Oxford University Press, 2003.
|
[24] |
REBUFFI L, CRENN J P. Radiation patterns of the HE11 mode and Gaussian approximations[J]. Int J Infrared Millimeter Waves, 1989, 10: 291-311.
|
[25] |
SMITH G M, LESURF J C G, MITCHELL R H, et al. Quasi-optical CW mm-wave electron spin resonance spectrometer[J]. Rev Sci Instrum, 1998, 69(11): 3924-3937.
|
[26] |
CAVALLO A, DOANE J, CUTLER R. Low-loss broadband multimode corrugated waveguide performance[J]. Rev Sci Instrum, 1990, 61(9): 2396-2400.
|
[27] |
赵亮亮. THz金属网格带通滤波器的研究[D]. 南京: 东南大学.
|
[28] |
MATSUI T, ARAKI K, KIYOKAWA M. Gaussian-beam open resonator with highly reflective circular coupling regions[J]. IEEE Trans Microw Theory Tech, 1993, 41(10): 1710-1714.
|
[29] |
ULRICH R. Far-infrared properties of metallic mesh and its complementary structure[J]. Infrared Phys, 1967, 7(1): 37-55.
|
[30] |
HE Y, KANG R, SHI Z, et al. A design of resonant cavity with an improved coupling-adjusting mechanism for the W-band EPR spectrometer[J]. Chin Phys B, 2022, 31(11): 117601.
|
[31] |
NIELSEN R D, ROBINSON B H. The effect of field modulation on a simple resonance line shape[J]. Concept Magn Reson A, 2004, 23(1): 38-48.
|
[32] |
EATON G R, EATON S S, BARR D P, et al. Quantitative EPR[M]. Springer Science & Business Media, 2010.
|
[33] |
REED G H, MARKHAM G D. EPR of Mn (II) complexes with enzymes and other proteins[J]. Biol Magn Reson, 1984, 6: 73-142.
|
[34] |
SCHMALBEIN D, MARESCH G G, KAMLOWSKI A, et al. The Bruker high-frequency-EPR system[J]. Appl Magn Reson, 1999, 16(2): 185-205.
|
[35] |
BABUNTS R A, BADALYAN A G, GURIN A S, et al. Capabilities of compact high-frequency EPR/ESE/ODMR spectrometers based on a series of microwave bridges and a cryogen-free magneto-optical cryostat[J]. Appl Magn Reson, 2020, 51: 1125-1143.
|