波谱学杂志 ›› 2023, Vol. 40 ›› Issue (3): 341-364.doi: 10.11938/cjmr20233051
• 综述评论 • 上一篇
收稿日期:
2023-01-10
出版日期:
2023-09-05
在线发表日期:
2023-03-21
通讯作者:
*Tel: 13956033702, E-mail: 基金资助:
KONG Lingwen1,2,KUANG Guangli1,2,*(),WU Xiangyang2
Received:
2023-01-10
Published:
2023-09-05
Online:
2023-03-21
Contact:
*Tel: 13956033702, E-mail: 摘要:
电子顺磁共振(EPR)是一种研究磁性材料微观信息的测量手段.由于早期的EPR研究受到磁场强度和微波频率的限制,一些材料相关的微观信息并不能得到清晰地显示.近些年来,随着强磁场技术和微波技术的发展,连续波电子顺磁共振(cw-EPR)谱仪和脉冲电子顺磁共振(pulsed EPR)谱仪在高频高场下得到了充分的应用,同时谱仪的灵敏度和分辨率等技术指标也得到了比较好的提升.本文主要介绍了在高频高场下EPR谱仪的原理和构造,国内外发展历程和研究现状,以及在相关领域的最新应用.
中图分类号:
孔令文, 匡光力, 吴向阳. 高频高场下EPR谱仪的研究进展[J]. 波谱学杂志, 2023, 40(3): 341-364.
KONG Lingwen, KUANG Guangli, WU Xiangyang. Research Progress of EPR Spectrometer Under High Frequency and High Field[J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 341-364.
表1
欧美国家强磁场EPR装置分布
Laboratory | EPR spectrometer | B/T | v/GHz | T/K |
---|---|---|---|---|
The National High Magnetic Field Laboratory (NHMFL, US) | Heterodyne quasi-optical spectrometer | 12.5 | 120~336 | 1.5~400 |
Transmission spectrometer | 15/17 | 24~660 | 3~309 | |
W-band HiPER spectrometer | 9 | 94 | 4~300 | |
Broadband BWO spectrometer | 25 | 70~1 200 | Depends on the cryostat used | |
Broadband MVNA spectrometer | 45 | 8~1 000 | 0.5~400 | |
XW-band Bruker pulsed spectrometer | 6 | 9~94 | 4~300 | |
The Dresden High Magnetic Field Laboratory (HLD, Germany) | Transmission-probe multi-frequency spectrometer | 70 | 0.1~9 000 | 1.5~300 |
The Grenoble and Toulouses National High Magnetic Field Laboratory (LNCMI, France) | Multifrequency EPR spectrometer operating | 16 | 95~770 | 2.1~300 |
The Nijmegen High Field Magnet Laboratory (HFML, Netherlands) | Free-electron lasers multifrequency EPR spectrometer | 33 | 0.25~120 000 | 4~300 |
表2
日本强磁场EPR装置分布[4]
Place | Source | v/GHz | Detector | B/T | T/K |
---|---|---|---|---|---|
Sendai | Vector network | 50~120 | Diode | 20 | 0.2~300 |
Tsukuba | FIR laser | 250~3 000 | InSb | 40 | 1.8~300 |
Kashiwa | FIR laser | 250~5 000 | InSb | 150 | 10~300 |
Yokohama | Gunn etc. | 20~110 | InSb | 16 | 1.8~300 |
FIR laser | 600~7 000 | ||||
Vector network | 30~660 | Diode | |||
Fukui | Gunn | 95~120 | InSb | 40 | 1.8~300 |
Gyrotron | <610 | InSb | |||
Vector network | 82~800 | Diode | 12 | ||
Osaka | Gunn | 94 | InSb | 55 | 1.4~300 |
FIR laser | 326~3 100 | ||||
Kobe | Gunn+multi | 30~315 | InSb | 40 | 1.8~300 |
BWO | 180~1 200 | ||||
FIR laser | 250~7 000 | ||||
Okayama | Gunn | 35~100 | InSb | 40 | 0.5~300 |
BWO | 300 | ||||
FIR laser | 250~7 000 | 30 |
[1] | 苏吉虎, 杜江峰. 电子顺磁共振波谱—原理与应用[M]. 北京: 科学出版社, 2022. |
[2] |
SALIKHOV K M. Electron paramagnetic resonance applications: promising developments at the E K Zavoisky Kazan Physical-Technical Institute of the Russian Academy of Sciences[J]. Physics-Uspekhi, 2016, 59(6): 588-594.
doi: 10.3367/UFNe.2016.02.037760 |
[3] | OLEG Y G, LAWRENCE J B. Very high frequency (VHF) ESR/EPR[M]. New York: Kluwer Academic/Plenum Publishers, 2004. |
[4] | 程佳珺. 脉冲强磁场高频ESR系统的研制及其在磁性材料研究中的应用[D]. 武汉: 华中科技大学, 2015. |
[5] | CHO F H. Developmnt of high-frequency electron paramagnetic resonance (EPR) spectrometer and investigation of paramagnetic defects and impurities in diamonds by multi-frequency EPR spectroscopy[D]. University of Southern California, 2015. |
[6] |
TELSER J, KRZYSTEK J, OZAROWSKI A. High-frequency and high-field electron paramagnetic resonance (HFEPR): a new spectroscopic tool for bioinorganic chemistry[J]. J Biol Inorg Chem, 2014, 19(3): 297-318.
doi: 10.1007/s00775-013-1084-3 pmid: 24477944 |
[7] | KRZYSTEK J, OZAROWSKI A, TELSER J, et al. High-frequency and -field electron paramagnetic resonance of vanadium(IV, III, and II) complexes[J]. Coordin Chem Rev, 2015, 301: 123-133. |
[8] | SMITH G M, LESURF J C G, MITCHELL R H, et al. ESR at millimetre and sub-millimetre wave frequencies[C]// IEE Colloquium on Terahertz Technology and its Applications, London, UK: IET, 1997, 5: 1-6. |
[9] |
SAVITSKY A, MOBIUS K. High-field EPR[J]. Photosynth Res, 2009, 102(2-3): 311-333.
doi: 10.1007/s11120-009-9432-4 |
[10] |
SONG L K, LIU Z L, KAUR P, et al. Toward increased concentration sensitivity for continuous wave EPR investigations of spin-labeled biological macromolecules at high fields[J]. J Magn Reson, 2016, 265: 188-196.
doi: 10.1016/j.jmr.2016.02.007 pmid: 26923151 |
[11] |
SMITH G M, LESURF J C G, MITCHELL R H, et al. Quasi-optical cw mm-wave electron spin resonance spectrometer[J]. Rev Sci Instrum, 1998, 69(11): 3924-3937.
doi: 10.1063/1.1149200 |
[12] | SMITH G M, ROBERTSON D A, BOLTON D R, et al. Instrumentation for high sensitivity, high power, millimetre wave, electron paramagnetic resonance[C]// IET Colloquium on Millimetre-Wave and Terahertz Engineering & Technology, London, UK: IET, 2016: 1-5. |
[13] |
BLANK A, TWIG Y, ISHAY Y. Recent trends in high spin sensitivity magnetic resonance[J]. J Magn Reson, 2017, 280: 20-29.
doi: S1090-7807(17)30058-7 pmid: 28545918 |
[14] |
MORTON J J L, BERTET P. Storing quantum information in spins and high-sensitivity ESR[J]. J Magn Reson, 2018, 287: 128-139.
doi: S1090-7807(17)30289-6 pmid: 29413326 |
[15] |
YAMAUCHI S, TAKAHASHI K, ISLAM S S M, et al. Time-resolved high-frequency EPR studies on magnesium and zinc tetraphenylporphines in their lowest excited triplet states[J]. J Phys Chem B, 2010, 114(45): 14559-14563.
doi: 10.1021/jp1023197 |
[16] |
HOFBAUER W, EARLE K A, DUNNAM C R, et al. High-power 95 GHz pulsed electron spin resonance spectrometer[J]. Rev Sci Instrum, 2004, 75(5): 1194-1208.
doi: 10.1063/1.1710700 |
[17] |
CRUICKSHANK P A, BOLTON D R, ROBERTSON D A, et al. A kilowatt pulsed 94 GHz electron paramagnetic resonance spectrometer with high concentration sensitivity, high instantaneous bandwidth, and low dead time[J]. Rev Sci Instrum, 2009, 80(10): 103102.
doi: 10.1063/1.3239402 |
[18] | 任明伟. 宽带电子顺磁共振谱仪的设计与实现[D]. 合肥: 中国科学技术大学, 2018. |
[19] |
EARLE K A, DZIKOVSKI B, HOFBAUER W, et al. High-frequency ESR at ACERT[J]. Magn Reson Chem, 2005, 43: S256-S266.
doi: 10.1002/(ISSN)1097-458X |
[20] |
BORBAT P P, COSTA-FILHO A J, EARLE K A, et al. Electron spin resonance in studies of membranes and proteins[J]. Science, 2001, 291(5502): 266-269.
doi: 10.1126/science.291.5502.266 pmid: 11253218 |
[21] |
FREED J H. New technologies in electron spin resonance[J]. Ann Rev Phys Chem, 2000, 51: 655-689.
doi: 10.1146/physchem.2000.51.issue-1 |
[22] | 王皓. 电子顺磁共振谱仪中基于相频关系的自动频率控制系统的设计[D]. 合肥: 中国科学技术大学, 2017. |
[23] |
JESCHKE G. Quo vadis EPR?[J]. J Magn Reson, 2019, 306: 36-41.
doi: S1090-7807(19)30133-8 pmid: 31345773 |
[24] | PRISNER T F. Pulsed high-frequency/high-field EPR[J]. Advances in Magnetic and Optical Resonance, 1997, 20: 245-299. |
[25] | SUSHIL K. MISRA. Multifrequency Electron Paramagnetic Resonance[M]. Germany: Deutsche Nationalbibliothek, 2011. |
[26] |
TELSER J, KRZYSTEK J, OZAROWSKI A. High-frequency and high-field electron paramagnetic resonance (HFEPR): a new spectroscopic tool for bioinorganic chemistry[J]. J Biol Inorg Chem, 2014, 19(3): 297-318.
doi: 10.1007/s00775-013-1084-3 pmid: 24477944 |
[27] |
REIJERSE E J. High-frequency EPR instrumentation[J]. Appl Magn Reson, 2010, 37(1-4): 795-818.
doi: 10.1007/s00723-009-0070-y |
[28] |
MULLER F, HOPKINS M A, CORON N, et al. A high magnetic field EPR spectrometer[J]. Rev Sci Instrum, 1989, 60(12): 3681-3684.
doi: 10.1063/1.1140474 |
[29] |
PRISNER T F, ROHRER M, MOBIUS K. Pulsed 95 GHz high-field EPR heterodyne spectrometer with high spectral and time resolution[J]. Appl Magn Reson, 1994, 7(2-3): 167-183.
doi: 10.1007/BF03162610 |
[30] |
FUCHS M R, PRISNER T F, MOBIUS K. A high-field/high-frequency heterodyne induction-mode electron paramagnetic resonance spectrometer operating at 360 GHz[J]. Rev Sci Instrum, 1999, 70(9): 3681-3683.
doi: 10.1063/1.1149977 |
[31] |
SCHMALBEIN D, MARESCH G G, KAMLOWSKI A, et al. The Bruker high-frequency-EPR system[J]. Appl Magn Reson, 1999, 16(2): 185-205.
doi: 10.1007/BF03161933 |
[32] |
SMITH G M, LESURF J C G, MITCHELL R H, et al. Quasi-optical cw mm-wave electron spin resonance spectrometer[J]. Rev Sci Instrum, 1998, 69(11): 3924-3937.
doi: 10.1063/1.1149200 |
[33] |
HASSAN A K, PARDI L A, KRZYSTEK J, et al. Ultrawide band multifrequency high-field EMR technique: A methodology for increasing spectroscopic information[J]. J Magn Reson, 2000, 142(2): 300-312.
pmid: 10648147 |
[34] |
EATON G R, EATON S S. High-field and high-frequency EPR[J]. Appl Magn Reson, 1999, 16(2): 161-166.
doi: 10.1007/BF03161931 |
[35] |
BLOK H, DISSELHORST J, ORLINSKII S B, et al. A continuous-wave and pulsed electron spin resonance spectrometer operating at 275 GHz[J]. Journal of Magnetic Resonance, 2004, 166(1): 92-99.
pmid: 14675824 |
[36] | LU J F, LIU Y. Review on the development of electron paramagnetic resonance (EPR) in China in 50 years[J]. Chinese J Magn Reson, 2011, 28(04): 564-572. |
卢景雰, 刘扬. 中国电子顺磁共振(EPR)发展50年回顾[J]. 波谱学杂志, 2011, 28(04): 564-572. | |
[37] |
CHO F H, STEPANOV V, ABEYWARDANA C, et al. 230/115 GHz electron paramagnetic resonance/double electron-electron resonance spectroscopy[J]. Methods Enzymol, 2015, 563: 95-118.
doi: 10.1016/bs.mie.2015.07.001 pmid: 26478483 |
[38] | WANG S L, LI L, OUYANG Z W, et al. Development of high frequency electron spin resonance device with pulsed high magnetic field[J]. Acta Physica Sinica, 2012, 61(10): 405-409. |
王绍良, 李亮, 欧阳钟文, 等. 脉冲强磁场高频电子自旋共振装置的研制[J]. 物理学报, 2012, 61(10): 405-409. | |
[39] |
GABBASOV B, GAFUROV M, STARSHOVA A, et al. Conventional, pulsed and high-field electron paramagnetic resonance for studying metal impurities in calcium phosphates of biogenic and synthetic origins[J]. J Magn Magn Mater, 2019, 470: 109-117.
doi: 10.1016/j.jmmm.2018.02.039 |
[40] |
HARRABI R, HALBRITTER T, AUSSENAC F, et al. Highly efficient polarizing agents for MAS-DNP of proton-dense molecular solids[J]. Angew Chem Int Ed, 2022, 61(12): 1-9.
doi: 10.1002/(ISSN)1521-3757 |
[41] |
SWAPNALIN J, KUMAR N S, NAIDU K C B, et al. Recent developments in electron paramagnetic resonance for spectroscopic applications[J]. Biointerface Res Appl Chem, 2023, 13(1): 45.
doi: 10.33263/BRIAC |
[42] | UBBINK M, WORRALL J A R, CANTERS G W, et al. Paramagnetic resonance of biological metal centers[J]. Ann Rev Bioph Biom, 2002, 31: 393-422. |
[43] |
FITTIPALDI M, STEINER R A, MATSUSHITA M, et al. Single-crystal EPR study at 95 GHz of the type 2 copper site of the inhibitor-bound quercetin 2,3-dioxygenase[J]. Biophys J, 2003, 85(6): 4047-4054.
pmid: 14645093 |
[44] |
BARRA A L, HASSAN A K, JANOSCHKA A, et al. Broad-band quasi-optical HF-EPR spectroscopy: application to the study of the ferrous iron center from a rubredoxin mutant[J]. Appl Magn Reson, 2006, 30(3-4): 385-397.
doi: 10.1007/BF03166208 |
[45] |
DAVIS I, KOTO T, TERRELL J R, et al. High-frequency/high-field electron paramagnetic resonance and theoretical studies of tryptophan-based radicals[J]. J Phys Chem A, 2018, 122(12): 3170-3176.
doi: 10.1021/acs.jpca.7b12434 pmid: 29488750 |
[46] |
DAVIES M J. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods[J]. Methods, 2016, 109: 21-30.
doi: S1046-2023(16)30143-8 pmid: 27211009 |
[47] | BRACCI M, BRUZZESE P C, FAMULARI A, et al. Paramagnetic species in catalysis research: a unified approach towards(the role of EPR in) heterogeneous, homogeneous and enzyme catalysis[M]. Britain: The Royal Society of Chemistry, 2020. |
[48] | PENG Z L, DALLAS J, TAKAHASHI S. Reduction of surface spin-induced electron spin relaxations in nanodiamonds[J]. J Appl Phys, 2020, 128(5): 1-8. |
[49] | JACKSON C E, LIN C Y, VAN TOL J, et al. Orientation dependence of phase memory relaxation in the V(IV) ion at high frequencies[J]. Chemical Physics Letters, 2020, 739: 1-5. |
[50] |
EDINACH E V, USPENSKAYA Y A, GURIN A S, et al. Application of high-frequency electron paramagnetic resonance/electron spin echo for the identification of the impurity composition and electronic structure of ceramics based garnets[J]. Phys Solid State, 2019, 61(10): 1820-1828.
doi: 10.1134/S1063783419100135 |
[51] | SAIZ C L, DELGADO J A, VAN TOL J, et al. 2D correlations in the van der Waals ferromagnet CrBr3 using high frequency electron spin resonance spectroscopy[J]. J Appl Phys, 2021, 129(23): 1-7. |
[52] |
KUMAR P, SANTALUCIA D J, KANIEWSKA-LASKOWSKA K, et al. Probing the magnetic anisotropy of Co(II) complexes featuring redox-active ligands[J]. Inorg Chem, 2020, 59(22): 16178-16193.
doi: 10.1021/acs.inorgchem.0c01812 pmid: 33141572 |
[53] |
MURATOVIC S, KARADENIZ B, STOLAR T, et al. Impact of dehydration and mechanical amorphization on the magnetic properties of Ni(ii)-MOF-74[J]. J Mater Chem C, 2020, 8(21): 7132-7142.
doi: 10.1039/D0TC00844C |
[54] |
PAULIN J V, BATAGIN-NETO A, NAYDENOV B, et al. High-field/high-frequency EPR spectroscopy on synthetic melanin: on the origin of carbon-centered radicals[J]. Materials Advances, 2021, 2(19): 6297-6305.
doi: 10.1039/D1MA00446H |
[55] | LI J X, TONG W. Graphic user interface design of EPR spectrum simulation software EasySpin[J]. Chinese J Magn Reson, 2023, 30(1): 100-110. |
李晶鑫, 童伟. EPR谱图模拟软件EasySpin的图形用户界面设计[J]. 波谱学杂志, 2023, 30(1): 100-110. | |
[56] | GAFUROV M R, PONOMAREV A A, MAMIN G V, et al. Application of pulsed and high-frequency electron paramagnetic resonance techniques to study petroleum disperse systems[J]. Georesursy, 2020, 22(4): 2-14. |
[1] | 贺羽,石致富,赵新星,苏陶,苏吉虎. 新型X波段多功能EPR谱仪的设计与性能[J]. 波谱学杂志, 2022, 39(1): 1-10. |
[2] | 黄兴,张子立,胡新宁,牛飞飞,孙万硕,孔祥东,戴银明. 核磁共振磁体超导接头工艺研究进展[J]. 波谱学杂志, 2021, 38(3): 424-432. |
[3] | 周梓发, 陈富, 张华明. Cu1-xHxZr2(PO4)3中Cu2+的EPR谱和局域结构研究[J]. 波谱学杂志, 2020, 37(3): 399-406. |
[4] | 詹嘉莹, 涂章仁, 杜晓凤, 袁斌, 郭迪, 屈小波. 基于低秩矩阵的非均匀采样NMR波谱重建进展[J]. 波谱学杂志, 2020, 37(3): 255-272. |
[5] | 林泽羽, 霍华, 王启航. 固体核磁共振研究单斜磷酸钒锂的进展(英文)[J]. 波谱学杂志, 2020, 37(1): 16-27. |
[6] | 林晓晴, 李弘, 詹昊霖, 杜世佳, 黄玉清, 陈忠. 高分辨率核磁共振纯化学位移谱新方法及其应用[J]. 波谱学杂志, 2019, 36(4): 425-436. |
[7] | 徐小俊, 王申林. 19F固体核磁共振技术研究膜蛋白相互作用的进展[J]. 波谱学杂志, 2019, 36(2): 238-251. |
[8] | 陈莉, 谈小莉, ANTAL Rockenbauer, 王润玲, 刘阳平. PEG化氘代单磷酸三苯甲基自由基的高效合成及性能研究[J]. 波谱学杂志, 2019, 36(2): 208-218. |
[9] | 葛玉玮, 刘买利, 甘哲宏, 李从刚. 质子化学位移各向异性的测量[J]. 波谱学杂志, 2018, 35(2): 255-267. |
[10] | 范凯, 郭俊旺, 邹洁芮, 丛建波, 马蕾, 董国福, 吴可. EPR在体测量专用调制磁场驱动装置[J]. 波谱学杂志, 2017, 34(3): 365-371. |
[11] | 刘早, 朱天雄, 贺玉贵, 陈俊飞, 冯继文, 刘朝阳. DNP-EPR多功能谱仪中微波桥的设计与实现[J]. 波谱学杂志, 2017, 34(3): 357-364. |
[12] | 杨贤鹏, 俞豪杰, 王立. 二茂铁基化合物的ESR研究进展[J]. 波谱学杂志, 2016, 33(3): 491-501. |
[13] | 周丽芳1,朱翔1,赵红莉1,蓝闽波1,2*, 史新梅2. 小鼠甲醇氧化应激的电子顺磁共振的研究[J]. 波谱学杂志, 2013, 30(4): 507-515. |
[14] | 袁清泉,郭俊旺,丛建波,董国福,马蕾,吴可*. 在体剂量检测专用EPR数据采集与控制系统[J]. 波谱学杂志, 2013, 30(3): 354-360. |
[15] | 袁清泉,郭俊旺,丛建波,董国福,吴可*. 在体EPR专用磁场装置性能的改进[J]. 波谱学杂志, 2013, 30(2): 227-232. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||