[1] |
YU H Q, YAO C Y, DENG Y S. Diagnosis and treatment of meningioma in cerebellopontine angle[J]. Journal of Clinical Medical, 2015, 2(27): 5650-5651.
|
|
于洪泉, 姚长义, 邓玉生. 桥小脑角区脑膜瘤的诊断及治疗[J]. 临床医药文献电子杂志, 2015, 2(27): 5650-5651.
|
[2] |
RADES D, FEHLAUER F, LAMSZUS K, et al. Well-differentiated neurocytoma: what is the best available treatment?[J]. Neuro-oncology, 2005, 7(1): 77-83.
doi: 10.1215/S1152851704000584
pmid: 15701284
|
[3] |
GEERT L, THIJS K, BABAK E B, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017, 42: 60-88.
doi: S1361-8415(17)30113-5
pmid: 28778026
|
[4] |
ZHANG W L, LI R J, DENG H T, et al. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation[J]. NeuroImage, 2015, 108: 214-224.
doi: 10.1016/j.neuroimage.2014.12.061
pmid: 25562829
|
[5] |
MOESKOPS P, VIERGEVER M A, MENDRIK A M, et al. Automatic segmentation of MR brain images with a convolutional neural network[J]. IEEE T Med Imaging, 2016, 35(5): 1252-1261.
doi: 10.1109/TMI.2016.2548501
pmid: 27046893
|
[6] |
HERENT P, SCHMAUCH B, JEHANNO P, et al. Detection and characterization of MRI breast lesions using deep learning[J]. Diagn Interv Imag, 2019, 100(4): 219-225.
doi: S2211-5684(19)30056-7
pmid: 30926444
|
[7] |
WEI Z H, YAN S J, HAN B S, et al. Diagnosis of alzheimer’s disease based on multi-output three-dimensional convolutional neural network[J]. Chinese J Magn Reson, 2021, 38(1): 92-100.
|
|
魏志宏, 闫士举, 韩宝三, 等. 基于多输出的3D卷积神经网络诊断阿尔兹海默病[J]. 波谱学杂志, 2021, 38(1): 92-100.
|
[8] |
TIAN J X, LIU G C, GU S S, et al. Deep learning in medical image analysis and its challenges[J]. Acta Automatica Sinica, 2018, 44(3): 401-424.
|
|
田娟秀, 刘国才, 谷珊珊, 等. 医学图像分析深度学习方法研究与挑战[J]. 自动化学报, 2018, 44(3): 401-424.
|
[9] |
JIANG Z K, LV X G, ZHANG J X, et al. Review of deep learning methods for MRI brain tumor image segmentation[J]. Journal of Image and Graphics, 2020, 25(2): 215-228.
|
|
江宗康, 吕晓钢, 张建新, 等. MRI脑肿瘤图像分割的深度学习方法综述[J]. 中国图象图形学报, 2020, 25(2): 215-228.
|
[10] |
HAVAEI M, DAVY A, WAROK-FARLEY D, et al. Brain tumor segmentation with deep neural networks[J]. Med Image Anal, 2017, 35: 18-31.
doi: S1361-8415(16)30033-0
pmid: 27310171
|
[11] |
WU Y C, LIN L, WU S C. Multimodal high-grade glioma semantic segmentation network with multi-scale and multi-attention fusion mechanism[J]. Journal of Biomedical Engineering, 2022, 39(3): 433-440.
|
|
吴玉超, 林岚, 吴水才. 基于多尺度、多路注意力融合机制的多模态高等级脑胶质瘤语义分割网络[J]. 生物医学工程学杂志, 2022, 39(3): 433-440.
|
[12] |
LOU Y Z, LIU Y, JIANG H, et al. A deep learning algorithm for classifying meningioma and auditory neuroma in the cerebellopontine angle from magnetic resonance images[J]. Chinese J Magn Reson, 2020, 37(3): 300-310.
|
|
娄云重, 刘颖, 江华, 等. 基于MRI和深度学习的桥小脑角区脑膜瘤与听神经瘤分类算法研究[J]. 波谱学杂志, 2020, 37(3): 300-310.
|
[13] |
LIU Y, CHEN J C. HU X Y, et al. Classification and localization of meningioma and acoustic neuroma in cerebellopontine angle based on Mask RCNN[J]. Chinese J Magn Reson, 2021, 38(1): 58-68.
|
|
刘颖, 陈静聪, 胡小洋, 等. 基于Mask RCNN的桥小脑角区脑膜瘤与听神经瘤分类定位研究[J]. 波谱学杂志, 2021, 38(1): 58-68.
|
[14] |
HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]// IEEE International Conference on Computer Vision. Washington D C: IEEE, 2017: 2961-2969.
|
[15] |
YUAN L, QIU Z. Mask-RCNN with spatial attention for pedestrian segmentation in cyber-physical systems[J]. Comput Commun, 2021, 180: 109-114.
doi: 10.1016/j.comcom.2021.09.002
|
[16] |
AHMED B, GULLIVER T A, ALZAHIR S. Image splicing detection using mask-RCNN[J]. Signal Image Video P, 2020, 14(5): 1035-1042.
|
[17] |
ZHANG H Y, XU X Y, MA X F, et al. Mask-RCNN recognition method of composite fold shape in ultrasound images[J]. Acta Physica Sinica, 2022, 71(1): 203-210.
|
|
张海燕, 徐心语, 马雪芬, 等. 超声图像中复合材料褶皱形态的Mask-RCNN识别方法[J]. 物理学报, 2022, 71(7): 203-210.
|
[18] |
HAO S Y, LEE D H, ZHAO D. Sequence to sequence learning with attention mechanism for short-term passenger flow prediction in large-scale metro system[J]. Transport Res C-Emer, 2019, 107(C): 287-300.
|
[19] |
CHEN H H, WU G D, LI J X, et al. Research advances on deep learning recommendation based on attention mechanism[J]. Comput Eng Sci, 2021, 43(2): 370-380.
|
|
陈海涵, 吴国栋, 李景霞, 等. 基于注意力机制的深度学习推荐研究进展[J]. 计算机工程与科学, 2021, 43(2): 370-380.
|
[20] |
DAI Y, LIU W B, DONG X Y, et al. U-NET CSF cells segmentation based on attention mechanism[J]. Journal of Northeastern University(Natural Science), 2022, 43(7): 944-950.
doi: 10.12068/j.issn.1005-3026.2022.07.005
|
|
代茵, 刘维宾, 董昕阳, 等. 基于注意力机制的U-Net脑脊液细胞分割[J]. 东北大学学报(自然科学版), 2022, 43(7): 944-950.
doi: 10.12068/j.issn.1005-3026.2022.07.005
|
[21] |
KAREL Z. Contrast limited adaptive histogram equalization[C]// Graphics Gems IV. San Diego: Academic Press Professional, 1994: 474-485.
|
[22] |
LIU X, LIU J B. Mammary image enhancement based on contrast limited adaptive histogram equalization[J]. Computer Engineering and Applications, 2008, 44(10): 173-175.
|
|
刘轩, 刘佳宾. 基于对比度受限自适应直方图均衡的乳腺图像增强[J]. 计算机工程与应用, 2008, 44(10): 173-175.
|
[23] |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[J]. IEEE Computer Society, 2017. DOI: 10.1109/CVPR.2017.106.
doi: 10.1109/CVPR.2017.106
|
[24] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]// International Conference on Learning Representations (ICLR), 2015: 1-14.
|
[25] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2016: 770-778.
|
[26] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4): 640-651. DOI:10.1109/CVPR.2015.7298965.
doi: 10.1109/CVPR.2015.7298965
|
[27] |
SHEN X X, HOU X W, YIN C H. State attention in deep reinforcement learning[J]. CAAI transactions on intelligent systems, 2020, 15(2): 317-322.
|
|
申翔翔, 侯新文, 尹传环. 深度强化学习中状态注意力机制的研究[J]. 智能系统学报, 2020, 15(2): 317-322.
|
[28] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]// Computer Vision (ECCV 2018). Cham: Springer International Publishing, 2018: 3-19.
|
[29] |
黄泽桑. 基于深度学习的目标检测技术研究[D]. 北京: 北京邮电大学, 2019.
|
[30] |
PADILLA R, PASSOS W L, DIAS T L B, et al. A comparative analysis of object detection metrics with a companion open-source toolkit[J]. Electronics. 2021, 10(3): 279.
doi: 10.3390/electronics10030279
|
[31] |
MNIH V, HEESS N, GRAVES A. Recurrent models of visual attention[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems, Cambridge: MIT Press, 2014, 2: 2204-2212.
|
[32] |
LI H Y, LI C G, AN J B, et al. Attention mechanism improves CNN remote sensing image object detection[J]. Journal of Image and Graphics, 2019, 24(8): 1400-1408.
|
|
李红艳, 李春庚, 安居白, 等. 注意力机制改进卷积神经网络的遥感图像目标检测[J]. 中国图象图形学报, 2019, 24(8): 1400-1408.
|
[33] |
XU W H, PEI Y J, GAO D L, et al. Mass classification of breast mammogram based on attention mechanism and transfer learning[J]. Laser Optoelectronics Progress, 2021, 58(4): 146-154.
|
|
许文慧, 裴以建, 郜冬林, 等. 基于注意力机制与迁移学习的乳腺钼靶肿块分类[J]. 激光与光电子学进展, 2021, 58(4): 146-154.
|
[34] |
ZHENG F, CHEN X Z. Status of artificial intelligence in meningioma image[J]. Chin J Magn Reson Imaging, 2020, 11(10): 934-936.
|
|
郑飞, 陈绪珠. 脑膜瘤影像人工智能应用进展[J]. 磁共振成像, 2020, 11(10): 934-936.
|
[35] |
DONG Y D, WEI W, MA X L. Progress in application of stereotactic radiosurgery in treatment of acoustic neuroma[J]. Journal of Otology, 2020, 18(1): 25-32.
|
|
董耀东, 魏薇, 马秀岚. 立体放射治疗技术在听神经瘤治疗中的应用进展[J]. 中华耳科学杂志, 2020, 18(1): 25-32.
|
[36] |
ARTHURS B J, LAMOREAUX W T, MACKAY A R, et al. Gamma knife radiosurgery for vestibular schwannomas: tumor control and functional preservation in 70 patients.[J]. Am J Clin Oncol, 2011, 34(3): 265-269.
doi: 10.1097/COC.0b013e3181dbc2ab
|
[37] |
FOOTE K D, FRIEDMAN W A, BUATTI J M, et al. Analysis of risk factors associated with radiosurgery for vestibular schwannoma[J]. J Neurosurg, 2001, 95(3): 440-449.
doi: 10.3171/jns.2001.95.3.0440
pmid: 11565866
|
[38] |
RYKACZEWSKI B, ZABEK M. A meta-analysis of treatment of vestibular schwannoma using gamma knife radiosurgery[J]. Contemporary Oncology, 2014, 18(1): 60-66.
|