波谱学杂志 ›› 2016, Vol. 33 ›› Issue (2): 269-280.doi: 10.11938/cjmr20160209
高雯菁1, 李锵1, 陈品元2, 杜振丰3, 赵一平4,5
收稿日期:
2015-05-28
修回日期:
2016-04-10
出版日期:
2016-06-05
发布日期:
2016-06-05
通讯作者:
赵一平,电话:+886-3-2118800#5469,E-mail:yiping@mail.cgu.edu.tw.
E-mail:yiping@mail.cgu.edu.tw
作者简介:
高雯菁(1991-),女,山西大同人,硕士研究生,信息与通信工程专业.
基金资助:
长庚大学研究计划资助项目(UERPD2D0081);长庚大学健康老化研究中心资助项目(CMRPD1B0332);长庚医院相对辅助款(BMRPC78).
GAO Wen-jing1, LI Qiang1, CHEN Pin-yuan2, TOH Cheng-hong3, CHAO Yi-ping4,5
Received:
2015-05-28
Revised:
2016-04-10
Online:
2016-06-05
Published:
2016-06-05
摘要:
通过限制球形卷积(constrained spherical deconvolution,CSD)和神经纤维追踪技术(tractography),以了解大脑左右半球的弓状束(arcuate fasciculus,AF)神经结构完整性与语言理解能力的相关性.该文使用磁共振成像(MRI)仪对14例大脑左半球罹患肿瘤的右利手患者进行了术前术后扫描(每次扫描均伴随一次波士顿失语症测试),并用分析软件DSI Studio计算术前术后左右半球弓状束的四项扩散指标,并进行了比较.结果发现左脑弓状束有两项指标在术前术后有非常显著的差异(p<0.01),而右脑四项指标均无显著改变(p>0.05).另外,该文还将扩散指标与患者相对应的语言测试所反映的语言理解能力进行了相关性分析,发现无论术前术后,左半球弓状束与语言理解能力相关系数r介于0.6~0.8之间,而右半球则仅介于0.3~0.4之间.上述结果表明,语言理解能力与左侧弓状束密切相关(p<0.01),而与右侧弓状束相关性不大,此结果与以往研究者对大脑侧化的认知相符.
中图分类号:
高雯菁, 李锵, 陈品元, 杜振丰, 赵一平. 应用限制球形卷积解析弓状束的结构特性与语言理解表现的相关性[J]. 波谱学杂志, 2016, 33(2): 269-280.
GAO Wen-jing, LI Qiang, CHEN Pin-yuan, TOH Cheng-hong, CHAO Yi-ping. Correlation Between Structural Characteristics of Arcuate Fasciculus and Performances of Language Comprehension Revealed by Diffusion Imaging Based Tractography[J]. Chinese Journal of Magnetic Resonance, 2016, 33(2): 269-280.
[1] Griffiths J D, Mraslen-Wilson W D, Stamatakis E A, et al. Functional organization of the neural language system:Dorsal and ventral pathways are critical for syntax[J]. Cereb Cortex, 2013, 23(1):139-147.[2] Maldonado I L, Morita-Gasser S, Duffau H. Does the left superior longitudinal fascicle subserve language semantics? A brain electrostimulation study[J]. Brain Struct and Funct, 2011, 216(3):263-274.[3] Parker G J, Luzzi S, Alexander D C, et al. Lateralization of ventral and dorsal auditory-language pathways in the human brain[J]. Neuroimage, 2005, 24(3):656-666.[4] Tournier J D, Yeh C H, Calamante F, et al. Resolving crossing fibres using constrained spherical deconvolution:Validation using diffusion-weighted imaging phantom data[J]. Neuroimage, 2008, 42(2):617-625.[5] Frey S, Campbell J S, Pike G B, et al. Dissociating the human language pathways with high angular resolution diffusion fiber tractography[J]. J Neurosci, 2008, 28(45):11435-11444.[6] Leclercq D, Duffau H, Delmaire C, et al. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations[J]. J Neurosurg, 2010, 112(3):503-511.[7] Johansen-Berg H, Behrens T E. Diffusion MRI:From Quantitative Measurement to in vivo Neuroanatomy[M]. USA:Academic Press, 2013.[8] Song S K, Sun S W, Ramsbottom M J, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water[J]. Neuroimage, 2002, 17(3):1429-1436.[9] Yeh F C, Verstynen T D, Wang Y, et al. Deterministic diffusion fiber tracking improved by quantitative anisotropy[J]. PloS One, 2013, 8(11):80713.[10] Ma Kai(马凯), Wang Xiao-zhou(王晓舟), Gao Dian-shuai(高殿帅), et al. Nerve fiber tracking methods using diffusion tensor imaging(应用弥散张量成像实现神经纤维追踪的方法)[J]. Journal of Clinical Rehabilitative Tissue Engineering Research(中国组织工程研究与临床康复), 2010, 14(43):7983-7986.[11] Yang Xiang-xiang(杨香香). Research on Visualization Based on Multiple Gradient Direction Diffusion Tensor Imaging of Brain Tissue(基于多梯度方向扩散张量成像的脑神经纤维可视化研究)[D]. Tianjin(天津):Tianjin University(天津大学), 2010.[12] Kuhnt D, Bauer M H, Egger J, et al. Fiber tractography based on diffusion tensor imaging compared with high-angular-resolution diffusion imaging with compressed sensing:initial experience[J]. Neurosurgery, 2013, 72(1):165-175.[13] Chen Ke-hsin(陈可欣), Fan Hsin-ya(范馨亚), Cao Su-ping(曹书萍), et al. Probabilistic language pathways based HARDI tractography(基于高夹角分辨率扩散磁振造影神经径路追踪的人脑语言机率路径图谱)[J]. Chinese J Magn Reson(波谱学杂志), 2010, 27(3):417-424.[14] Jiang Xiao-ping(姜小平), Li Jian-qi(李建奇), Fan Ming-xia(范明霞), et al. Line-scan diffusion tensor imaging on low field strength MRI scanner(低场MRI系统中线扫描扩散张量成像方法的研究)[J]. Chinese J Magn Reson(波谱学杂志), 2008, 25(4):470-477.[15] Moser M J, Breger R K, Khatri B O, et al. 17th Annual Meeting of the Society for Magnetic Resonance in Medicine[C]. USA:Proc Intl Soc Mag Reson Med, 2009.[16] Saur D, Kreher B W, Schnell S, et al. Ventral and dorsal pathways for language[J]. P Natl Acad Sci U S A, 2008, 105(46):18035-18040.[17] Leclercq D, Duffau H, Delmaire C, et al. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations:Clinical article[J]. J Neurosurg, 2010, 112(3):503-511.[18] Madler B, Drabycz S A, Kolind S H, et al. Is diffusion anisotropy an accurate monitor of myelination? Correlation of multicomponent T-2 relaxation and diffusion tensor anisotropy in human brain[J]. Magn Reson Imaging, 2008, 26(7):874-888.[19] Song S K, Sun S W, Ramsbottom M J, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water[J]. Neuroimage, 2002, 17(3):1429-1436.[20] Zhuang Yan(庄严), Shen Jia-lin(沈加林), Xu Jian-rong(许建荣), et al. DTI study on Broca aphasia in patients with ischemic srtoke(卒中后Broca失语症的DTI研究)[J]. Chinese J Med Imaging Technol(中国医学影像技术), 2008, 24(1):37-40.[21] Wan C Y, Zheng X, Marchina S, et al. Intensive therapy induces contralateral white matter changes in chronic stroke patients with Broca's aphasia[J]. Brain Lang, 2014, 136:1-7.[22] Paldino M J, Hedges K, Zhang W. Independent contribution of individual white matter pathways to language function in pediatric epilepsy patients[J]. Neuro Image-Clin, 2014, 6:327-332.[23] Glasser M F, Rilling J K. DTI tractography of the human brain's language pathways[J]. Cereb Cortex, 2008, 18(11):2471-2482.[24] Bello L, Fava E, Gallucci M, et al. Intraoperative subcortical language tract mapping guides surgical removal of gliomas involving speech areas[J]. Neuro-Oncology, 2006, 8(4):314-314.[25] Powell H W, Parker G J, Alexander D C, et al. Hemispheric asymmetries in language-related pathways:A combined functional MRI and tractography study[J]. Neuroimage, 2006, 32(1):388-399. |
[1] | 朱泽华, 闫士举, 阮渊, 韩邦旻. 基于改进DRLSE模型的前列腺磁共振图像分割[J]. 波谱学杂志, 2020, 37(4): 447-455. |
[2] | 刘思, 安艳捧, 唐惠儒. 冷冻干燥对人类体液代谢组影响的NMR研究[J]. 波谱学杂志, 2020, 37(4): 484-489. |
[3] | 刘鹏, 钟玉敏, 王丽嘉. 基于密集多尺度U-net网络的电影心脏磁共振图像右心室自动分割[J]. 波谱学杂志, 2020, 37(4): 456-468. |
[4] | 李英俊, 杨鸿境, 刘季红, 靳焜, 林乐弟, 刘雪洁. 基于咔唑-三嗪并吲哚的N-酰腙衍生物的NMR数据归属[J]. 波谱学杂志, 2020, 37(4): 496-504. |
[5] | 周中高, 谢倩, 元洋洋, 李静, 路东亮, 陈正旺. 吡喃葡糖基氮杂环卡宾-钯(II)-吡啶配合物的NMR研究[J]. 波谱学杂志, 2020, 37(4): 505-514. |
[6] | 柯汉平, 蔡宏浩. 基于哈德曼编码的新型高分辨定域谱[J]. 波谱学杂志, 2020, 37(4): 524-532. |
[7] | 王婉婷, 苏适, 贾森, 梁栋, 王海峰. 基于虚拟线圈和卷积神经网络的多层同时激发图像重建[J]. 波谱学杂志, 2020, 37(4): 407-421. |
[8] | 雒媛, 朱凯然. 相位可控的核四极矩共振激励脉冲发生器设计[J]. 波谱学杂志, 2020, 37(4): 515-523. |
[9] | 吴明娣, 冯洁, 贾慧惠, 吴继志, 张欣, 常严, 杨晓冬, 盛茂. 儿童发育性髋关节脱位的磁共振形态学定量[J]. 波谱学杂志, 2020, 37(4): 434-446. |
[10] | 保秋连, 杨云汉, 魏可可, 罗建萍, 古捷, 鲁佳佳, 杨丽娟. 水溶性磷酸盐柱[5]芳烃与吖啶橙的络合行为[J]. 波谱学杂志, 2020, 37(4): 469-483. |
[11] | 程力维, 王璐璐, 钟凯. fMRI在经颅直流电刺激研究中的应用进展[J]. 波谱学杂志, 2020, 37(4): 533-546. |
[12] | 窦梦雨 赵奇 侯相林 刘雷 唐明兴 王英雄. 蒽加氢产物的结构指认和定量核磁共振分析[J]. 波谱学杂志, 0, (): 0-0. |
[13] | 温亮, 李春发. 等规聚丙烯成核剂的结构和构型分析[J]. 波谱学杂志, 2020, 37(3): 291-299. |
[14] | 徐鹏程, 肖亮. 多通道磁共振成像仪控制台数据传输模块设计[J]. 波谱学杂志, 2020, 37(3): 283-290. |
[15] | 詹嘉莹, 涂章仁, 杜晓凤, 袁斌, 郭迪, 屈小波. 基于低秩矩阵的非均匀采样NMR波谱重建进展[J]. 波谱学杂志, 2020, 37(3): 255-272. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||