波谱学杂志 ›› 2016, Vol. 33 ›› Issue (2): 244-256.doi: 10.11938/cjmr20160207

• 研究论文 • 上一篇    下一篇

基于压缩感知/重采样的NMR噪声抑制新方法

聂莉莎1,2, 蒋滨1, 张许1, 刘买利1   

  1. 1. 波谱与原子分子物理国家重点实验室, 武汉磁共振中心(中国科学院 武汉物理与数学研究所), 湖北 武汉 430071;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2015-05-04 修回日期:2016-04-12 出版日期:2016-06-05 发布日期:2016-06-05
  • 通讯作者: 蒋滨,电话:027-87198965,E-mail:jbin@wipm.ac.cn;张许,电话:027-87198636,E-mail:zhangxu@wipm.ac.cn. E-mail:jbin@wipm.ac.cn;zhangxu@wipm.ac.cn
  • 作者简介:聂莉莎(1988-),女,重庆忠县人,硕士研究生,生物工程专业.
  • 基金资助:

    国家自然科学基金资助项目(21475146).

A Compressed Sensing and Resampling Based Noise Suppression Method for NMR

NIE Li-sha1,2, JIANG Bin1, ZHANG Xu1, LIU Mai-li1   

  1. 1. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan(Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences), Wuhan 430071, China;
    2. University of Chinese Academic of Sciences, Beijing 100049, China
  • Received:2015-05-04 Revised:2016-04-12 Online:2016-06-05 Published:2016-06-05

摘要:

发展高灵敏检测方法是分析化学的永恒主题之一,提高信号强度和降低噪声水平是增强灵敏度的根本途径.在核磁共振波谱(NMR)分析中,通常采用高磁场强度的谱仪或复杂的脉冲实验方法来提高信号强度,或通过使用超低温探头来降低噪声水平,但这无疑会提高实验成本或增加实验难度.相较而言,利用数据后处理方法辨识和抑制噪声,是更为经济的提高信噪比(SNR)的途径.因此,该文在前期研究中发展的基于统计学中重采样原理的数据后处理方法(NASR)的基础上,通过引入压缩感知(CS)技术,对重采样方法进行了优化改进,所发展的NMR数据处理新方法(CS_NASR)可有效排除主观因素影响,提高处理结果的鲁棒性.

关键词: 核磁共振(NMR), 数据处理, 噪声抑制, 压缩感知(CS), 重采样

Abstract:

Sensitivity enhancement is an everlasting topic in analytical chemistry, for which the two most common approaches are signal enhancing and noise suppressing. In nuclear magnetic resonance (NMR) spectroscopy, signal enhancement can be achieved by utilizing high field spectrometers, cryogenic probes and/or using sophisticated pulse sequences. However, these approaches are often associated with dramatically increased cost. The other way to enhance sensitivity is to de-noise the data by post-processing, which is obviously more cost-effective and attractive. Based on the statistical resampling principle, we previously developed an NMR data post-processing method named NASR (An Effective Approach for Simultaneous Noise and Artifact Suppression in NMR Spectroscopy), which is effective to reduce unwanted noises and suppress artifacts in one-dimensional and multiple-dimensional NMR experiments. In practice, however, the optimal parameter setting for NASR is often difficult to achieve. In this study, compressed sensing (CS) was incorporated into the original NASR approach, resulting in a novel and robust noise suppression method for NMR experiments (CS_NASR), in which the subjective factors of the handlers are negligible.

Key words: NMR, data processing, noise suppression, compressed sensing (CS), resampling

中图分类号: