Please wait a minute...
波谱学杂志  2015, Vol. 32 Issue (2): 261-272    DOI: 10.11938/cjmr20150209
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超极化Xenon 对慢阻肺的可视化加权成像
阮伟伟1,2,钟俭平1,韩叶清1,孙献平1,叶朝辉1,周欣1*?
1. 武汉磁共振中心,波谱与原子分子物理国家重点实验室,中国科学院生物磁共振分析重点实验室(中国科学院 武汉物理与数学研究所),武汉 430071;
2. 中国科学院大学,北京 100049
Visualize Diffusion Map of COPD Rat with Hyperpolarized Xenon MRI
RUAN Wei-wei1,2,ZHONG Jian-ping1,HAN Ye-qing1,SUN Xian-ping1,YE Chao-hui1,ZHOU Xin1*?
1. Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan (Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences), Wuhan 430071;
2. University of Chinese Academy of Sciences, Beijing 100049
下载:  PDF (361KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

超极化气体3He 或者129Xe 扩散加权成像已经被证明了能够有效检测慢性阻塞性肺部疾病(COPD)中肺部微结构的改变.相比于3He,129Xe 更便宜而且更容易获得,但是129Xe 成像中较低的信噪比致使129Xe 的肺部表面扩散系数(ADC)的测量面临着许多困难.在该研究中,为了得到更高的图像信噪比,作者对气球模型,健康大鼠和COPD大鼠进行了单个b 值(14 cm2/s)的扩散加权超极化129Xe 磁共振成像(MRI).所有的COPD模型大鼠是通过烟熏和注射内毒素(LPS)进行诱导得到的.在7 T 磁共振成像仪上面获得了大鼠肺实质的超极化129Xe ADC 值分布图.COPD 大鼠肺实质的129Xe ADC 值是0.044 22±0.002 9 和0.042 34±0.002 3 cm2/s (Δ = 0.8/1.2 ms),远大于健康大鼠肺实质的129Xe ADC 值0.037 7±0.002 3 和0.036 7±0.001 3 cm2/s.而且COPD 大鼠肺实质相关的129Xe ADC 直方图也表现出了一定的展宽.这些结果说明了COPD 大鼠肺泡空腔的增大能够通过129Xe 在肺里面的ADC 增长和相关直方图的拓宽反应出来,从而证明了单个b 值的扩散加权MRI 方法可以有效地对COPD 大鼠进行检测.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阮伟伟1
2
钟俭平1
韩叶清1
孙献平1
叶朝辉1
周欣1*
关键词:  超极化氙气  磁共振成像    表面扩张系数  慢阻肺    
Abstract: 

Hyperpolarized 3He or 129Xe diffusion MRI has been demonstrated as a promising technique for the detection of microanatomical changes in chronic obstructive pulmonary disease (COPD). Compared with 3He, 129Xe is more available for the potential clinical applications. However, the measurement of 129Xe apparent diffusion coefficient (ADC) possesses more challenges due to the relevant low gyromagnetic ratio and spin polarization. In this present study, a single b value (b = 14 s/cm2) diffusion-weighted hyperpolarized 129Xe MRI sequence was used to image a balloon phantom, healthy rats, and the COPD rats, respectively. All COPD rats were induced by second-hand smoke and lipopolysaccharide (LPS). The lung 129Xe ADC maps were obtained on a 7 T MRI scanner. The mean lung parenchymal 129Xe ADCs were 0.044 22±0.002 9 and 0.042 34±0.002 3 cm2/s (Δ = 0.8/1.2 ms) for the COPD rats, which showed significant increasements in comparison with healthy ones (0.037 7±0.002 3 and 0.036 7±0.001 3 cm2/s). Furthermore, the corresponding ADC histogram of the COPD rats exhibited a broader distribution as compared with the healthy ones. Our experiments demonstrated that the alveolar airspace
enlargement in the COPD rats are able to be quantitatively evaluated by hyperpolarized xenon diffusion-weighted MRI.

Key words:  hyperpolarized xenon    MRI    lung    ADC    COPD
收稿日期:  2015-02-11      修回日期:  2015-05-10           出版日期:  2015-06-05      发布日期:  2015-06-05      期的出版日期:  2015-06-05
O482.53  
基金资助: 

Gants from the National Natural Science Foundation of China (81227902) and the Chinese Academy of Sciences (KJCX2-EW-N06-04).

作者简介:  *通讯联系人:周欣,电话:+86-27-87198802,E-mail: xinzhou@wipm.ac.cn.
引用本文:    
阮伟伟1,2,钟俭平1,韩叶清1,孙献平1,叶朝辉1,周欣1*. 超极化Xenon 对慢阻肺的可视化加权成像[J]. 波谱学杂志, 2015, 32(2): 261-272.
RUAN Wei-wei1,2,ZHONG Jian-ping1,HAN Ye-qing1,SUN Xian-ping1,YE Chao-hui1,ZHOU Xin1*. Visualize Diffusion Map of COPD Rat with Hyperpolarized Xenon MRI. Chinese Journal of Magnetic Resonance, 2015, 32(2): 261-272.
链接本文:  
http://manu45.magtech.com.cn/wk3_bpx/CN/10.11938/cjmr20150209  或          http://manu45.magtech.com.cn/wk3_bpx/CN/Y2015/V32/I2/261

[1] Rabe K F, Hurd S, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease - GOLD executive summary[J]. Am J Resp Crit Care Med, 2007, 176(6): 532-555.

[2] Wang C B, Mugler J P, de Lange E E, et al. Lung injury induced by secondhand smoke exposure detected with hyperpolarized helium-3 diffusion MR[J]. J Magn Reson Imaging, 2014, 39(1): 77-84.

[3] Plotkowiak M, Burrowes K, Wolber J, et al. Relationship between structural changes and hyperpolarized gas magnetic resonance imaging in chronic obstructive pulmonary disease using computational simulations with realistic alveolar geometry[J]. Philos T Roy Soc A, 2009, 367(1 896): 2 347-2 369.

[4] Thurlbeck W M. Overview of the pathology of pulmonary-emphysema in the human[J]. Clin Lab Med, 1984, 4(3): 539-559.

[5] Yablonskiy D A, Sukstanskii A L, Quirk J D, et al. Probing lung microstructure with hyperpolarized noble gas diffusion MRI: theoretical models and experimental results[J]. Magn Reson Med, 2014, 71(2): 486-505.

[6] Driehuys B, Cofer G P, Pollaro J, et al. Imaging alveolar-capillary gas transfer using hyperpolarized 129Xe MRI[J]. Proc Natl Acad Sci USA, 2006, 103(48): 18 278-18 283.

[7] Albert M S, Cates G D, Driehuys B, et al. Biological magnetic-resonance-imaging using laser polarized 129Xe[J]. Nature, 1994, 370(6 486): 199-201.

[8] Li H D, Zhang Z Y, Han Y Q, et al. Lung MRI using hyperpolarized gases[J]. Chinese J Magn Reson, 2014, 31(3): 307-320.

[9] Mata J, Altes T, Truwit J, et al. Characterization and detection of physiologic lung changes before and after placement of bronchial valves using hyperpolarized 3He MR imaging: preliminary study[J]. Acad Radiol, 2011, 18(9): 1 195-1 199.

[10] Moller H E, Chen X J, Saam B, et al. MRI of the lungs using hyperpolarized noble gases[J]. Magn Reson Med, 2002, 47(6): 1 029-1 051.

[11] Yablonskiy D A, Sukstanskii A L, Leawoods J C, et al. Quantitative in vivo assessment of lung microstructure at the alveolar level with hyperpolarized 3He diffusion MRI[J]. Proc Natl Acad Sci USA, 2002, 99(5): 3 111-3 116.

[12] Habib D, Grebenkov D, and Guillot G, et al. Gas diffusion in a pulmonary acinus model: experiments with hyperpolarized helium-3[J]. Magn Reson Imaging, 2008, 26(8): 1 101-1 113.

[13] Kaushik S S, Cleveland Z I, Cofer G P, et al. Diffusion-weighted hyperpolarized 129Xe MRI in healthy volunteers and subjects with chronic obstructive pulmonary disease[J]. Magn Reson Med, 2011, 65(4): 1 155-1 165.

[14] Kirby M, Svenningsen S, Kanhere N, et al. Pulmonary ventilation visualized using hyperpolarized 3He and 129Xe magnetic resonance imaging: differences in COPD and relationship to emphysema[J]. J Appl Phys, 2013, 114(6): 707-715.

[15] Boudreau M, Xu X, Santyr G E, et al. Measurement of 129Xe gas apparent diffusion coefficient anisotropy in an elastase-instilled rat model of emphysema[J]. Magn Reson Med, 2013, 69(1): 211-220.

[16] Zhou X, Mazzanti M L, Chen J J, et al. Reinvestigating hyperpolarized relaxation time in the rat brain 129Xe longitudinal with noise considerations[J]. NMR Biomed, 2008, 21(3): 217-225.

[17] Li S W, Zhang L, Li C L, et al. Fumigation and intratracheal instillation of lipopolysaccharide or they combining ozone exposure for establishing COPD models in rats[J]. J Beijing Univ Tradit Chin Med, 2014, 37(5): 321-324.


[18] Mattiello J, Basser P J, Lebihan D, et al. Analytical expressions for the b-matrix in NMR diffusion imaging and spectroscopy[J]. J Magn Reson Ser A, 1994, 111(2): 232-232.

[19] Blackberg L, Metsanurk E, Tamm A, et al. Molecular dynamics study of xenon on an amorphous Al2O3 surface[J]. Nuclear Instrum Methods Phys Res Sect A, 2014, 759: 10-15.

[20] Chen X J, Moller H E, Chawla M S, et al. Spatially resolved measurements of hyperpolarized gas properties in the lung in vivo. Part I: Diffusion coefficient[J]. Magn Reson Med, 1999, 42(4): 721-728.

[21] Ouriadov A, Farag A, Kirby M, et al. Lung morphometry using hyperpolarized 129Xe apparent diffusion coefficient anisotropy in chronic obstructive pulmonary disease[J]. Magn Reson Med, 2013, 70(6): 1 699-1 706.

[22] Carrero-Gonzalez L, Kaulisch T, Ruiz-Cabello J, et al. Apparent diffusion coefficient of hyperpolarized 3He with minimal influence of the residual gas in small animals[J]. NMR Biomed, 2012, 25(9): 1 026-1 032.

[23] Halaweish A F, Hoffman E A, Thedens D R, et al. Effect of lung inflation level on hyperpolarized He apparent Diffusion coefficient Measurements in never-smokers[J]. Radialogy, 2012, 268(2): 572-580.

[24] Diaz S, Casselbrant I, Piitulainen E, et al. Validity of apparent diffusion coefficient hyperpolarized 3He MRI using MSCT and pulmonary function tests as references[J]. Eur J Radiol, 2009, 71(2): 257-263.

[25] Patz S, Muradyan I, Hrovat M I, et al. Diffusion of hyperpolarized 129Xe in the lung: a simplified model of 129Xe septal uptake and experimental results[J]. New J Phys, 2011, 13(1): 015009.

[26] Sukstanskii A L, Yablonskiy D A. Lung morphometry with hyperpolarized 129Xe: theoretical background[J]. Magn Reson Med, 2012, 67(3): 856-866.

[27] Kirby M, Svenningsen S, Owrangi A, et al. Hyperpolarized 3He and 129Xe MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease[J]. Radiology, 2012, 265(2): 600-610.

[28] Nouls J, Fanarjian M, Hedlund L, et al. A constant-volume ventilator and gas recapture system for hyperpolarized gas MRI of mouse and rat lungs[J]. Concepts Magn Reson Part B Magn Reson Eng, 2011, 39B(2): 78-88.

[29] Shukla Y, Wheatley A, Kirby M, et al. Hyperpolarized 129Xe magnetic resonance imaging: tolerability in healthy volunteers and subjects with pulmonary disease[J]. Acad Radiol, 2012, 19(8): 941-951.

[30] Fricker M, Deane A, Hansbro P M, et al. Animal models of chronic obstructive pulmonary disease[J]. Expert Opin Drug Dis, 2014, 9(6): 629-645.

[31] Gierada D S, Woods J C, Bierhals A J, et al. Effects of diffusion time on short-range hyperpolarized 3He diffusivity measurements in emphysema[J]. J Magn Reson Imaging, 2009, 30(4): 801-808.

[1] 胡坤, 宁瑞鹏. 具有独立延时功能的脉冲序列发生器[J]. 波谱学杂志, 2017, 34(3): 347-356.
[2] 张艳辉, 张宏岩, 张海禄, 张朋利, 蒋海珍, 邓宗武, 谭波. 新型Gd基T2造影剂的制备和应用[J]. 波谱学杂志, 2017, 34(3): 302-310.
[3] 李文静, 谢海滨, 严序, 周敏雄, 向之明, 杨光. 基于局部位移校正的磁共振图像相干平均[J]. 波谱学杂志, 2017, 34(3): 294-301.
[4] 黄小倩, 赵乐乐, 陈利勇, 徐健, 陈群. 基于同时多层激发和并行成像的心脏磁共振电影成像[J]. 波谱学杂志, 2017, 34(3): 283-293.
[5] 何刚, 王为民. 一种用于高场MRI的多源射频发射机[J]. 波谱学杂志, 2017, 34(3): 338-346.
[6] 杨永贵, 陈忠, 蔡聪波, 郭岗. 1.5 T磁共振化学交换饱和转移成像的影响因素分析[J]. 波谱学杂志, 2017, 34(3): 275-282.
[7] 王小花, 孙鹏, 张许, 刘买利. 磁共振技术在食品质量与安全研究中的应用[J]. 波谱学杂志, 2017, 34(2): 245-256.
[8] 赵献策, 谢海滨, 郑慧, 郭天, 杨光. 用于磁共振图像灰度校正的CLIC改进模型[J]. 波谱学杂志, 2017, 34(2): 164-174.
[9] 颜志煜, 陈志伟. 基于Eclipse图形建模框架的图形化脉冲序列设计软件的实现[J]. 波谱学杂志, 2017, 34(2): 175-182.
[10] 李律, 周赜辰, 苑纯, 郭华. 基于优化后流动敏感黑血序列的豆纹动脉3T磁共振成像[J]. 波谱学杂志, 2016, 33(4): 528-538.
[11] 宋阳, 谢海滨, 杨光. 用于压缩感知磁共振成像的分割字典学习算法[J]. 波谱学杂志, 2016, 33(4): 559-569.
[12] 周子堃, 胡凌志, 蒋瑞瑞, 贺强, 张卫国, 陈群. 基于AFI的快速发射场B1+成像方法[J]. 波谱学杂志, 2016, 33(4): 515-527.
[13] 庄孝星, 马崚嶒, 蔡聪波, 陈忠. 一种基于时空变换和压缩感知的磁共振螺旋采样的图像重建算法[J]. 波谱学杂志, 2016, 33(4): 549-558.
[14] 郭新宇, 肖亮. 基于数据采集卡和GPU的MRI信号接收设计[J]. 波谱学杂志, 2016, 33(4): 581-589.
[15] 张雪莹, 王成龙, 谢海滨, 张成秀, 马超, 陆建平, 杨光. 基于GPU加速的磁共振血管造影图像的并行分割与追踪算法[J]. 波谱学杂志, 2016, 33(4): 570-580.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed